Trigonometry and Matrices
Linear equations
Find the value of k such that the system of equations.

$$
\begin{aligned}
& x+k y+3 z=0 \\
& 4 x+3 y+k z=0 \\
& 2 x+y+2 z=0
\end{aligned}
$$

has non, trivial solution.
sol. $\left[\begin{array}{ccc}1 & k & 3 \\ 4 & 3 & k \\ 2 & 1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
Because system has non-trivial sol.

$$
\begin{aligned}
& \therefore|A|=0 \\
& \left|\begin{array}{ccc}
1 & k & 3 \\
4 & 3 & k \\
2 & & 2
\end{array}\right|=0 \\
& 1(6-k)-k(8-2 k)+3(4-6)=0 \\
& 6-k-8 k+2 k^{2}-6=0
\end{aligned}
$$

$$
\begin{gathered}
2 k^{2}-9 k=0 \\
k(2 k-9)=0 \\
k=0,9 / 2
\end{gathered}
$$

