Trigonometry and Matrices
Function of a complex variable
Show that

$$
\log (\log (x+i y))=\frac{1}{2} \log \left(p^{2}+q^{2}\right)+i \tan ^{-1} q
$$

where $p=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ and

$$
q=\tan ^{-1} \frac{y}{x}
$$

So 1. we have

$$
\log (x+i y)=\frac{1}{2} \log \left(x^{2}+y^{2}\right)+i \tan ^{-1} y \|_{x}
$$

$$
\begin{align*}
\log (x+i y) & =p+i q . \tag{1}\\
\log (\log (x+i y)) & =\log (p+i q) \quad[f r o m(1)] \\
& =\frac{1}{2} \log \left(p^{2}+q^{2}\right)+i \tan ^{-1} \frac{q}{p}=\text { R.H.S }
\end{align*}
$$

