Trigonometry and Matrices
Function of a complex variable
If $i^{i i \ldots \infty}=A+i B$ and only principal values are Considered Prove that
(i) $\tan \frac{\pi A}{2}=\frac{B}{A}$
(ii) $A^{2}+B^{2}=e^{-\pi B}$
sol

$$
\begin{gathered}
i^{i^{i} \ldots \infty}=A+i B \\
i^{A+i B}=A+i B \\
A+i B=i^{(A+i B)} \quad a^{2}=e^{2 \log a} \\
=e^{(A+i B \log i \quad} \quad \\
=e^{(A+i B) \log (\cos \pi / 2+i \sin \pi / 2)} \\
\left.=e^{(A+i B)} \log e^{i \pi / 2} \quad \quad e^{i x}=\cos x+i \Delta i n x\right)
\end{gathered}
$$

$$
\begin{aligned}
& =e^{(A+i B) i \pi / 2} \\
& =e^{\frac{A i \pi}{2}+i^{2} \frac{B \pi}{2}} \\
& =e^{-\frac{-\pi}{2}+\frac{A \pi i}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =e^{\frac{-B \pi}{2}} \cdot e^{\frac{A \pi}{2} i} \quad\left(e^{i x}=\cos x+\right. \\
& =e^{-\frac{B \pi}{2}}\left[\cos \frac{A \pi}{2}+i \sin \frac{A \pi}{2}\right]
\end{aligned}
$$

$$
A+i B=e^{-\frac{B \pi}{2}} \cos \frac{A \pi}{2}+i e^{-\frac{B \pi}{2}} \sin \frac{A \pi}{2}
$$

Compare real and imaginary parts

$$
\begin{align*}
& A=e^{-\frac{B \pi}{2} \cos \frac{A \pi}{2}} \\
& B=e^{-B \pi / 2} \sin \frac{A \pi}{2} \tag{1}
\end{align*}
$$

Divide (1) Byob

$$
\begin{aligned}
& \frac{B}{A}=\frac{e^{-B \pi / 2} \sin A \pi / 2}{e^{-B \beta A_{2}} \cos A \pi / 2} \\
& \frac{B}{A}=\tan \frac{A \pi}{2} y \log
\end{aligned}
$$

81. are adding (1) 4 (1)

$$
A^{2}+B^{2}=e^{-B \pi} \cos ^{2} \frac{A \pi}{2}+e^{-B \pi} \sin ^{2} \frac{A \pi}{2}
$$

$$
\begin{aligned}
& =e^{-B \pi}\left(\cos ^{2} \frac{A \pi}{2}+\sin ^{2} \frac{A \pi}{2}\right) \\
A^{2}+B^{2} & =e^{-B \pi}
\end{aligned}
$$

