Plane Geometry
Ellipse
Prove that the product of focal distances of an extremity of a semi-diameter of an ellipse is equal to the square of conjugate semi diameter.

Proof Let given ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

p
and 0 are extremities of
Conjugate semi diameter.

$$
\text { So } \begin{aligned}
P & (a \cos \theta, b \sin \theta) \\
Q & (-a \sin \theta, b \cos \theta) \\
P s^{\prime} & =a+e x_{1} \\
& =a+e(a \cos \theta) \\
& =a(1+e \cos \theta) \\
P s & =a-e x_{1} \\
& =a-e(a \cos \theta) \\
& =a[1-e \cos \theta]
\end{aligned}
$$

$$
\begin{aligned}
P s^{\prime} \cdot P s & =a(1+e \cos \theta) \cdot a(1-e \cos \theta) \\
& =a^{2}\left(1-e^{2} \cos ^{2} \theta\right) \\
& =a^{2}-a^{2} e^{2} \cos ^{2} \theta \\
& =a^{2}-\left(a^{2}-b^{2}\right) \cos ^{2} \theta \\
& =a^{2}-a^{2} \cos ^{2} \theta+b^{2} \cos ^{2} \theta \\
& =a^{2}\left(1-\cos ^{2} \theta\right)+b^{2} \cos ^{2} \theta \\
P_{s^{\prime}} \cdot P_{s} & =a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta-\theta
\end{aligned}
$$

$$
\begin{align*}
& \begin{aligned}
&(c \theta)^{2}=\left(\sqrt{(-a \sin \theta-0)^{2}+(b \cos \theta-\theta)^{2}}\right)^{2} \\
& Q_{2}(-a \sin \theta, b \cos \theta)
\end{aligned} \\
& C=(0,0) \quad a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta \tag{II}\\
&=\text {-(Ii) } \\
& \text { from (1) \& (ii) } \\
& \text { SS }^{\prime} \cdot P s=(C Q)^{2}
\end{align*}
$$

Hence Proved.

