Plane Geometry
Ellipse
Prove that the eccentric angles of the extremities of two conjugate semi Diameters of an ellipse differ by a right angle
$\operatorname{Let} \theta_{1}, \theta_{2}$ be the eccentric angles of ρ and Q.

$$
\begin{aligned}
\therefore \quad & p\left(a \cos \theta_{1}, b \sin \theta_{1}\right) \\
& Q\left(a \cos \theta_{2}, b \sin \theta_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\text { slope of } c P & =\frac{b \sin \theta_{1}-0}{a \cos \theta_{1}-0} \\
& =\frac{b}{a} \tan \theta_{1} \\
\text { slope of } C \theta & =\frac{b \sin \theta_{2}-0}{a \cos \theta_{2}-0} \\
& =\frac{b}{a} \tan \theta_{2}
\end{aligned}
$$

also $C P, C D$ are Conjugate diameter

$$
m_{1} m_{2}=-\frac{b^{2}}{a^{2}}
$$

$$
\begin{aligned}
& \Rightarrow\left(\frac{b}{a} \tan \theta_{1}\right)\left(\frac{b}{a} \tan \theta_{2}\right)=\frac{-b^{2}}{a^{2}} \\
& \Rightarrow \tan \theta_{1} \tan \theta_{2}=-1 \\
& \Rightarrow \frac{\sin \theta_{1}}{\cos \theta_{1}} \cdot \frac{\sin \theta_{2}}{\cos \theta_{2}}=-1 \\
& \Rightarrow \sin \theta_{1} \sin \theta_{2}=-\cos \theta_{1} \cos \theta_{2} \\
& \Rightarrow \sin \theta_{1} \sin \theta_{2}+\cos \theta_{1} \cos \theta_{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \operatorname{Cos}\left(\theta_{1}-\theta_{2}\right)=0 \\
& \Rightarrow \quad \theta_{1}-\theta_{2}=\pi / 2
\end{aligned}
$$

Hence Proved.

