Plane Geometry
Prove that locus of the point whose polar w.r.t the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ touches the parabola $y^{2}=4 k x$ is another parabola.
So: Giver ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ Let Pole is $\left(x_{1}, y_{1}\right)$
eq. of Polar

$$
\begin{equation*}
\frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=1 . \tag{1}
\end{equation*}
$$

Given that (1) is tangent to Parabola $y^{2}=4 k x$
Condition for tangent t parabola.

$$
\begin{aligned}
n l & =a m^{2} \\
(-1) \frac{x_{1}}{a^{2}} & =k \cdot \frac{y_{1}^{2}}{b^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(-1) x_{1}}{a^{2}} \times \frac{b^{4}}{k}=y_{1}^{2} \\
& y_{1}^{2}=\left(-\frac{b^{4}}{a^{2} k}\right)^{x_{1}}
\end{aligned}
$$

which is a parabola.
Hance Proved.

