Plane Geometry Ellipse
If the eccentric angle of two points on an ellipse differ by $\pi / 2$ then show that the tangents to the Curve at these points

on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2$

Sol. Let eccentric angle of P is θ.
So eccentric angle of Q is $\pi \|_{2}+0$ tangent at P to ellipse

$$
\begin{gather*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1 \tag{1}
\end{gather*}
$$

t angent at Q to ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

$$
\begin{equation*}
\frac{x}{a} \cos \left(\frac{\pi}{2}+\theta\right)+\frac{y}{b} \sin (\pi / 2+\theta)=1 \tag{11}
\end{equation*}
$$

squaring and adding (1) 4(1)

$$
\begin{aligned}
& \left(\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta\right)^{2}+\left(\frac{x}{a} \cos (\pi / 2+\theta)\right. \\
& +\frac{y}{b} \sin (\pi / 2+0)^{2} \\
& =1
\end{aligned}
$$

$$
\begin{gathered}
\frac{x^{2}}{a^{2}} \cos ^{2} \theta+\frac{y^{2}}{b^{2}} \sin ^{2} \theta+2 \cdot \frac{x}{2} \cos \theta \cdot \frac{y}{b} \sin \theta+ \\
\frac{x^{2}}{a^{2}} \sin ^{2} \theta+\frac{y^{2}}{b^{2}} \cos ^{2} \theta-2 \cdot \frac{x}{a} \sin \theta \cdot \frac{y}{b} \cos \theta \\
\frac{x^{2}}{a^{2}}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+\frac{y^{2}}{b^{2}}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=2 \\
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2 .
\end{gathered}
$$

Which is required result.

