Plane Geometry
Ellipse
Show that the Condition that the pole of $l x+m y=1$ w.r.t the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ may lie on the ellipse $\frac{x^{2}}{q a^{2}}+\frac{y^{2}}{9 b^{2}}=1$ is $a^{2} l^{2}+b^{2} m^{2}=9$

Sol Given ellipse is

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Let $\left(x_{1}, y_{1}\right)$ be the pole.
e?. of Polar

$$
\begin{equation*}
\frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=1 \tag{1}
\end{equation*}
$$

But given polar is

$$
\begin{equation*}
l x+m y=1 \tag{1}
\end{equation*}
$$

\therefore eq. (1) 4 (II) are same

$$
\begin{gather*}
\frac{x_{1}}{a^{2}}=l \quad \& \frac{y_{1}}{b^{2}}=m . \\
x_{1}=l a^{2} \& y_{1}=m b^{2} \tag{111}
\end{gather*}
$$

also $\left(x_{1}, y_{1}\right)$ lie o_{n}

$$
\frac{x^{2}}{9 a^{2}}+\frac{y^{2}}{9 b^{2}}=1
$$

$$
\begin{aligned}
& \begin{array}{l}
\frac{x_{1}{ }^{2}}{9 a^{2}}+\frac{y_{1}{ }^{2}}{9 b^{2}}=1 \\
\frac{l^{2} a^{42}}{9 a^{2}}+\frac{m^{2} b^{42}}{9 b^{2}}=1 \quad[\text { from } \\
{[171]}
\end{array} \\
& \frac{l^{2} a^{2}}{9}+\frac{m^{2} b^{2}}{9}=1 \\
& \text { Henceproved } l^{2} a^{2}+m^{2} b^{2}=9
\end{aligned}
$$

