Plane Geometry
Ellipse
Find the minimum angle between a pair of conjugate diameters of the ellipse

$$
4 x^{2}+9 y^{2}=36
$$

Giver ellépseis

$$
\begin{aligned}
& 4 x^{2}+9 y^{2}=36 \\
& \frac{4 x^{2}}{36}+\frac{9 y^{2}}{36}=1
\end{aligned}
$$

$$
\begin{aligned}
\frac{x^{2}}{9}+\frac{y^{2}}{4} & =1 \\
a^{2} & =9 \quad b^{2}=4 \\
a & =3 \quad b=2
\end{aligned}
$$

$P(a \cos \theta, b \sin \theta) \quad Q(-a \sin \theta, b \cos \theta)$
$P(3 \cos \theta, 2 \sin \theta) Q(-3 \sin \theta, 2 \cos \theta)$
slope of $O P=\frac{2 \sin \theta-0}{3 \cos \theta-0}=\frac{2}{3} \frac{\sin \theta}{\cos \theta}$

$$
\begin{aligned}
m_{1} & =\frac{2}{3} \tan \theta \\
\text { slope of } 0 \theta m_{2} & =\frac{2 \cos \theta-0}{-3 \sin \theta-0}=\frac{-2}{3} \cot \theta
\end{aligned}
$$

Let ϕ be the angle b / w op $\& O Q$.

$$
\tan \phi=\frac{\frac{2}{3} \tan \theta+\frac{2}{3} \cot \theta}{1+\frac{2}{3} \tan \theta\left(\frac{-2}{3} \cot \theta\right)}
$$

$$
\begin{aligned}
\frac{12}{5} \frac{1}{\sin 2 \theta} & =\frac{\frac{2}{3}(\tan \theta+\cot \theta)}{1-\frac{4}{9}} \\
\tan \varphi=\frac{12}{5} & =\frac{2}{2} \times \frac{\frac{q}{}^{3}}{5}\left(\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}\right) \\
\phi_{2} \tan ^{-1}\left(\frac{12}{5}\right) & =\frac{6}{5}\left(\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}\right) \\
\tan \phi & =\frac{6}{5}\left(\frac{2}{2 \sin \theta \operatorname{sos} \theta}\right)=\frac{6}{5} \times \frac{2}{\sin 2 \theta}
\end{aligned}
$$

