Plane Geometry Ellipse

Show that the minimum angle between a pair of conjugate diameters of ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad \text { is } \tan ^{-1}\left(\frac{2 a b}{a^{2}-b^{2}}\right)
$$

$$
\begin{aligned}
& P(a \cos \theta, b \sin \theta) \\
& Q(-a \sin \theta, b \cos \theta) \\
& \text { slope of op }\left(m_{1}\right)=\frac{b \sin \theta}{a \cos \theta}-\text { (1) }
\end{aligned}
$$

slope of $O Q m_{2}=\frac{b \cos \theta}{-a \sin \theta}=\frac{-b}{a} \frac{\cos \theta}{\sin \theta}-$ (ii)
Let Q be angle b/w diameters.

$$
\begin{aligned}
& \tan \varphi=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& \tan \varphi=\frac{\left|\frac{b \sin \theta}{a \cos \theta}+\frac{b \cos \theta}{a \sin \theta}\right|}{1+\left(\frac{b \sin \theta}{a \cos \theta}\right)\left(-\frac{b \cos \theta}{a \sin \theta}\right)}
\end{aligned}
$$

$$
\begin{aligned}
\tan \phi & =\frac{\frac{b}{a}\left(\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}\right)}{1-\frac{b^{2}}{a^{2}}} \\
& =\frac{\frac{b}{a} \frac{1}{\sin \theta \cos \theta}}{\frac{a^{2}-b^{2}}{a^{2}}} \\
& =\frac{b}{a} \cdot \frac{a^{2}}{a^{2}-b^{2}}\left[\frac{1.2}{2 \sin \theta \cos \theta}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \tan \varphi=\frac{2 a b}{a^{2}-b^{2}}\left[\frac{1}{\sin 2 \theta}\right] \\
& \tan \varphi=\frac{2 a b}{a^{2}-b^{2}} \quad[\because \sin 2 \theta=1] \\
& \varphi=\tan ^{-1}\left(\frac{2 a b}{a^{2}-b^{2}}\right)
\end{aligned}
$$

