Plane Geometry Circle
Prove that the radii of the circles

$$
\begin{aligned}
& x^{2}+y^{2}=1 \\
& x^{2}+y^{2}-2 x-6 y-6=0 \\
& x^{2}+y^{2}-4 x-12 y-9=0 \text { are in A.P. }
\end{aligned}
$$

Proof Given el. are

$$
x^{2}+y^{2}=1 \quad \rightarrow 0
$$

$$
\begin{align*}
& x^{2}+y^{2}-2 x-6 y-6=0 \tag{2}\\
& x^{2}+y^{2}-4 x-12 y-9=0 \text {-(2) } \tag{3}\\
& r_{1}=\text { Radius of }(1)=1 . \\
& r_{2}=\text { Radius of (2) }
\end{align*}=\sqrt{g^{2}+f^{2}-c} .
$$

$$
r_{2}=4 .
$$

$$
\begin{aligned}
r_{3}=\text { Radius of }(3) & =\sqrt{g^{2}+f^{2}-c} \\
& =\sqrt{(-2)^{2}+(-6)^{2}-(-9)} \\
& =\sqrt{4+36+9} \\
& =\sqrt{49}=7 \\
r_{3} & =7
\end{aligned}
$$

$r_{1}, r_{2}, r_{3}=1,4,7$
Hance redii are in A.P.

