Plane Geometry
Pair of straight lines
If P_{1} and P_{2} are the lengths of perpendiculars drawn from the point $(-1,2)$ to the pair of lines given by the equation.

$$
2 x^{2}-5 x y+2 y^{2}+3 x-3 y+1=0
$$

Prove that $\quad P_{1} P_{2}=\frac{12}{5}$

Sol. Given eq. is

$$
\begin{gather*}
2 x^{2}-5 x y+2 y^{2}+3 x-3 y+1=0 \tag{1}\\
2 x^{2}+(-5 y+3) x+\left(2 y^{2}-3 y+1\right)=0
\end{gather*}
$$

This is quad. in x.

$$
\begin{aligned}
& x=\frac{-(-5 y+3) \pm \sqrt{(-5 y+3)^{2}-4(2)\left(2 y^{2}-3 y+1\right.}}{2(2)} \\
& x=\frac{5 y-3 \pm \sqrt{2 y^{2}+9-30 y-16 y^{2}+24 y-8}}{4}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{5 y-3 \pm \sqrt{9 y^{2}-6 y+1}}{4} \\
& x=\frac{5 y-3 \pm \sqrt{(3 y-1)^{2}}}{4} \\
& x=\frac{5 y-3 \pm(3 y-1)}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore x=\frac{5 y-3+3 y-1}{4} \text { and } x=\frac{5 y-3-(3 y-1)}{4} \\
& \Rightarrow x=\frac{8 y-4}{4} \quad \text { and } x=\frac{2 y-2}{4} \\
& \Rightarrow x=\frac{2 y-1}{} \quad \text { and } x=\frac{y-1}{2} \\
& \Rightarrow \quad x-2 y+1=0 \text { (11) and } 2 x-y+1=0 \text { (iii) }
\end{aligned}
$$

eq. (11) and (11) are straight lines given by (1)

$$
\begin{aligned}
& P_{1}=\text { distance of }(-1,2) \text { from (11) } \\
& P_{1}=\frac{|(-1)-2(2)+1|}{\sqrt{1+4}}=\frac{4}{\sqrt{5}} \\
& P_{2}=\text { distance of }(-1,2) \text { from (111) }
\end{aligned}
$$

$$
\begin{aligned}
P_{2} & =\frac{|2(-1)-(2)+1|}{\sqrt{4+1}} \\
& =\frac{3}{\sqrt{5}} \\
P_{1} P_{2} & =\frac{4}{\sqrt{5}} \times \frac{3}{\sqrt{5}}=\frac{12}{5}
\end{aligned}
$$

Hence fromed.

