Plane Geometry
Pair of straight lines
Show that the equations

$$
x^{2}+2 \sqrt{3} x y+3 y^{2}-3 x-3 \sqrt{3} y-4=0
$$

represent a pair of parallel straight lines.
Find the distance between them.
Sol. Given eq. is

$$
=\quad x^{2}+2 \sqrt{3} x y+3 y^{2}-3 x-3 \sqrt{3} y-4=0
$$

$$
\begin{gathered}
x^{2}+(2 \sqrt{3} y-3) x+\left(3 y^{2}-3 \sqrt{3} y-4\right)=0 \\
x=\frac{-(2 \sqrt{3} y-3) \pm \sqrt{(2 \sqrt{3} y-3)^{2}-4 \cdot\left(3 y^{2}-3 \sqrt{3} y-4\right)}}{2} \\
x=\frac{-2 \sqrt{3} y+3 \pm \sqrt{12 y^{2}+9-12 \sqrt{3} y-12 y^{2}+12 \sqrt{3} y}+16}{2}
\end{gathered}
$$

$$
\begin{aligned}
& x=\frac{-2 \sqrt{3} y+3 \pm \sqrt{9+16}}{2} \\
& x=\frac{-2 \sqrt{3} y+3 \pm 5}{2} \text { olog } \\
& x=\frac{-2 \sqrt{3} y+8}{2} \text { or } x=\frac{-2 \sqrt{3} y-2}{2}
\end{aligned}
$$

lither $x=-\sqrt{3} y+4$ or $x=-\sqrt{3} y-1$

$$
\begin{align*}
\Rightarrow & x+\sqrt{3} y-4=0 \tag{11}\\
x & +\sqrt{3} y+1=0 \tag{III}\\
\text { slope of (III } & =\frac{-1}{\sqrt{3}} \\
\text { slop of (III) } & =\frac{-1}{\sqrt{3}}
\end{align*}
$$

slope of (II) = slope of (III)
\therefore lines (1) and (iii) are parallel.
Put $y=0$ in (2)

$$
x=4 .
$$

Point on line (11) is $(4,0)$

$$
O A=\frac{4+1}{\sqrt{1+3}}=\frac{5}{2} \text { Ans. }
$$

