Plane Geometry
Pair of straight lines
Prove that the triangle formed by lines

$$
a x^{2}+2 h x y+b y^{2}=0 \text { and } l x+m y+1=0
$$

is isosceles if $h\left(l^{2}-m^{2}\right)=(a-b) l m$
Sol. Given eq. is

$$
a x^{2}+2 h x y+b y^{2}=0 \text {-(1) }
$$

and $l x+m y+1=0$

The eq. is biscetoss of (1) is

$$
\frac{x^{2}-y^{2}}{a-b}=\frac{x y}{b}-\text { III) }
$$

The line $A B$ is $l x+m y+1=0$

$$
m_{1}=\frac{-l}{m}
$$

Let $O M \perp A B$.
Slope of $O M=\frac{m}{l}$
$\therefore \quad$ eq. of $O M$ is $\quad y=\frac{m}{l} x$
$\triangle A O B$ is isosceles if one of the bisector given by (III) is 1 to $A B$.
\Rightarrow if line given by 4 is one of the lines कf(3)
\Rightarrow if (4) ratifies (3)

$$
\frac{x^{2}-\frac{m^{2}}{l^{2}} x^{2}}{a-b}=\frac{x\left(\frac{m}{l}\right) x}{h}
$$

$$
\begin{array}{ll}
\Rightarrow & \frac{l^{2} x^{2}-m^{2} x^{2}}{l^{2}(a-b)}=\frac{m x^{2}}{l h} \\
\Rightarrow & \frac{x^{2}\left(l^{2}-m^{2}\right)}{l^{2}(a-b)}=\frac{m x^{2}}{l^{h}} \\
\Rightarrow \quad h\left(l^{2}-m^{2}\right)=(a-b) l m . \\
\quad \text { Hence Proved. }
\end{array}
$$

