Plane Geometry
Pair of straight lines
Bisectors of angles between Pair of dines through the origin
Find the equation to the straight lines bisecting the angles between the straight lines given by

$$
a x^{2}+2 h x y+b y^{2}=0
$$

Lut $a x^{2}+2 n x y+b y^{2}=0 D$ represents

$$
y=m_{1} x \text { and } y=m_{2} x
$$

$$
\begin{align*}
& m_{1}=\tan \theta_{1}=m_{2}=\tan \theta_{2} \\
& m_{1}+m_{2}=\tan \theta_{1}+\tan \theta_{2}=\frac{-2 h}{b} \tag{1}\\
& m_{1} m_{2}=\tan \theta_{1} \cdot \tan \theta_{2}=\frac{a}{b}- \tag{I}
\end{align*}
$$

$O C$ is internal and OD is external bisector of $\angle A O B$.

$$
\begin{align*}
\therefore \quad \angle A O C & =\angle C O B . \\
\angle X O C-\theta_{1} & =\theta_{2}-\angle X O C \\
\angle X O C+\angle X O C & =\theta_{1}+\theta_{2} \\
2 \angle X O C & =\theta_{1}+\theta_{2} \\
\angle X O C & =\frac{\theta_{1}+\theta_{2}}{2} \tag{III}
\end{align*}
$$

$$
\left.\begin{array}{rl}
\angle X O D & =\angle X O C+\angle C O D \\
& =\frac{Q_{1}+\theta_{2}}{2}+\frac{\pi}{2} \quad \begin{array}{l}
\text { internal and } \\
\text { external bisections } \\
\text { of an angle }
\end{array} \\
\angle X O D & \left.=\frac{1}{2}\left(\pi+\left(\theta_{1}+\theta_{2}\right)\right) \quad \text { are always } \perp\right]
\end{array}\right]
$$

Let θ is an angle of internal or external bisector with x-axis

$$
\begin{aligned}
& \text { either } \theta=L x O C \text { or } \theta=L \times O D \\
& \theta=\frac{\theta_{1}+\theta_{2}}{2} \text { or } \theta=\frac{1}{2}\left[\pi+\left(\theta_{1}+\theta_{2}\right)\right] \\
& \theta=\frac{\theta_{1}+\theta_{2}}{2} \text { y } \quad \text { of } \\
& 2 \theta=\theta_{1}+\theta_{2} \\
& \tan 2 \theta=\tan \left(\theta_{1}+\theta_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\tan \theta_{1}+\tan \theta_{2}}{1-\tan \theta_{1} \tan \theta_{2}} \\
& \frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{\frac{-2 h}{b}}{1-\frac{a}{b} y} \\
& {\left[\begin{array}{lll}
\\
& \text { (1) }
\end{array}\right]} \\
& \frac{\& y \mid x}{1-y^{2} \mid x^{2}}=\frac{-2 h}{\not y} \times \frac{b}{b-a} \\
& y=m x \\
& m=\frac{y}{x} \\
& \tan \theta=y \mid x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{y}{x} \times \frac{x^{y}}{x^{2}-y^{2}}=\frac{h}{a-b} \\
& \frac{x y}{x^{2}-y^{2}}=\frac{h}{a-b} \\
& \frac{x^{2}-y^{2}}{a-b}=\frac{x y}{h}
\end{aligned}
$$

