Plane Geometry
Pair of straight lines
Prove that the product of the perpendiculars let fall from the point $\left(x^{\prime}, y^{\prime}\right)$ upon the pair of straight lines $a x^{2}+2 h x y+b y^{2}=0$ is

$$
\frac{a x^{\prime 2}+2 h x^{\prime} y^{\prime}+b y^{\prime 2}}{\sqrt{(a-b)^{2}+4 h^{2}}}
$$

Sol. Given eq. is

$$
\begin{equation*}
a x^{2}+2 h x y+b y^{2}=0 \tag{1}
\end{equation*}
$$

Let el. (1) represent two lines

$$
\begin{aligned}
& y-m_{1} x=0 \text { and } y-m_{2} x=0 \\
& m_{1}+m_{2}=\frac{-2 h}{b} \\
& m_{1} m_{2}=\frac{a}{b}
\end{aligned}
$$

Let P_{1} is distance from $\left(x^{\prime} y^{\prime}\right)$

$$
\text { to } y, m_{1} x=0
$$

and l_{2} is distance from $\left(x^{\prime}, y^{\prime}\right)$ to $y-m_{2} x=0$

$$
P_{1}=\frac{y^{\prime}-m_{1} x^{\prime}}{\sqrt{1+m_{1}^{2}}} \text { and } \rho_{2}=\frac{y^{\prime}-m_{2} x^{\prime}}{\sqrt{1+m_{2}^{2}}}
$$

$$
\begin{aligned}
P_{1} \rho_{2} & \left.=\frac{\left(y^{\prime}-m_{1} x^{\prime}\right)}{\sqrt{1+m_{1}{ }^{2}}} \cdot \frac{y^{\prime}-m_{2} x^{\prime}}{\sqrt{1+m_{2}{ }^{2}}}\right\} \\
& =\frac{\left(y^{\prime}-m_{1} x^{\prime}\right)\left(y^{\prime}-m_{2} x^{\prime}\right)}{\sqrt{\left(1+m_{1}{ }^{2}\right)\left(1+m_{2}^{2}\right)}} \\
& =\frac{y^{\prime 2}-m_{2} x^{\prime} y^{\prime}-m_{1} x^{\prime} y^{\prime}+m_{1} m_{2} x^{\prime 2}}{\sqrt{1+m_{2}{ }^{2}+m_{1}{ }^{2}+m_{1}^{2} m_{2}{ }^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{y^{\prime 2}-\left(m_{1}+m_{2}\right) x^{\prime} y^{\prime}+m_{1} m_{2} x^{\prime 2}}{\sqrt{1+\left(m_{1}+m_{2}\right)^{2}-2 m_{1} m_{2}+m_{1}^{2} m_{2}}{ }^{2}\left(m_{1}+m_{2}\right)^{2}} \\
& =\frac{y^{\prime 2}-\left(\frac{-2 h}{b}\right) x^{\prime} y^{\prime}+\left(\frac{a}{b}\right) x^{\prime 2}}{\sqrt{1+\left(\frac{-2 h}{b}\right)^{2}-2\left(\frac{a}{b}\right)+\left(\frac{a}{b}\right)^{2}}}=\begin{array}{l}
m_{1}^{2}+m_{1}^{2} m_{1} \\
+2 m_{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{y^{\prime 2}+\frac{2 h}{b} x^{\prime} y^{\prime}+\frac{a}{b} x^{\prime 2}}{\sqrt{1+\frac{4 h^{2}}{b^{2}}-\frac{2 a}{b}+\frac{a^{2}}{b^{2}}}} \\
& =\frac{1}{\frac{1}{b}} \frac{\left(b y^{\prime 2}+2 h x^{\prime} y^{\prime}+a x^{\prime 2}\right)}{\sqrt{b^{2}+4 h^{2}-2 a b+a^{2}}}
\end{aligned}
$$

$$
=\frac{b y^{\prime 2}+2 h x^{\prime} y^{\prime}+a x^{\prime 2}}{\sqrt{(a-b)^{2}+4 h^{2}}}
$$

Hence Proved.

