THEORY OF EQUATIONS
Repeated Roots
Show that $x^{3}-x^{2}-x+1=0$ has a repeated root and solve it.

Sol. Given eq. is

$$
\begin{aligned}
& f(x)=x^{3}-x^{2}-x+1 \\
& f^{\prime}(x)=3 x^{2}-2 x-1
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=0 \\
& 3 x^{2}-2 x-1=0 \\
& 3 x^{2}-3 x+x-1=0 \\
& 3 x(x-1)+1(x-1)=0 \\
& (3 x+1)(x-1)=0 \\
& x=1,-1 / 3 .
\end{aligned}
$$

$$
14-1 / 3 \text { are roots of } f^{\prime}(x)
$$

$$
f(1)=1-1-1+1=0
$$

$\Rightarrow 1$ is root of $f(x)$
$\therefore 1$ is common root of $f(x) \& f^{\prime}(x)$
$\Rightarrow 1$ is a repeated root of $f(x)$

$$
\begin{aligned}
& f(x)=1,1, \alpha \\
\Rightarrow & (x-1)^{2} \text { are factors of } f(x)
\end{aligned}
$$

$$
\begin{gathered}
x^{2}-2 x+1 \text { divides } f(x) \\
x^{2}-2 x+1 \sqrt{x^{3}-x^{2}-x+1} \\
\frac{-\frac{x^{3}-2 x^{2}+x}{x+1}}{\frac{x^{2}-2 x+x}{2}-2 x+1} \\
\frac{-x^{2}+2}{0}
\end{gathered}
$$

The other root of $f(x)$ is giver by

$$
x=-1
$$

\Rightarrow Roots of $f(x)$ are

$$
1,1,-1
$$

Show that $x^{3}-3 x^{2}-4=0$ has no repeated root.
Sol. Given

$$
\begin{aligned}
& f(x)=x^{3}-3 x^{2}-4 \\
& f^{\prime}(x)=3 x^{2}-6 x
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=0 \\
& 3 x^{2}-6 x=0 \\
& x^{2}-2 x=0 \\
& x(x-2)=0 \\
& x=0,2
\end{aligned}
$$

0,2 are roots of $f^{\prime}(x)$

$$
\begin{aligned}
& f(0)=-4 \neq 0 \\
& f(2)=8-12-4=-8 \neq 0
\end{aligned}
$$

$$
x^{3}-3 x^{2}-4
$$

0,2 are not roots of $f(x)$
$\Rightarrow f(x)$ and $f^{\prime}(x)$ has no Common root.
$\Rightarrow f(x)$ has no repeated root.

