Calculus II
Asymptotes
Show that asymptote of the Cubic Curve

$$
x^{3}-x y^{2}-2 x y+2 x-y-1=0 \text { cut the }
$$

Curve in atmost three points which lies on the line $3 x-y-1=0$

Sol. Given Curve is

$$
\begin{aligned}
x^{3}-y^{2} & -2 x y+2 x-y-1=0 \\
x=1 \quad y & =m . \\
Q_{3}(m) & =1-m^{2} \\
Q_{2}(m) & =-2 m . \\
Q_{1}(m) & =2-m . \\
\text { Put } Q_{3}(m) & =0
\end{aligned}
$$

$$
\begin{aligned}
& 1-m^{2}=0 \\
& (1-m)(1+m)=0 \\
& m=-1,1 . \\
& c=-\frac{d_{2}(m)}{Q_{3}^{\prime}(m)} y \\
& =-\frac{(-2 m)}{-2 m}=-1 . \\
& c=-1 .
\end{aligned}
$$

Asymptotes are

$$
y=m x+c
$$

for $m=-1$

$$
\begin{aligned}
& y=-x-1 \\
& y+x+1=0
\end{aligned}
$$

for

$$
\begin{aligned}
& y=x-1 \\
& x-y-1=0
\end{aligned}
$$

Also Asymptote parallel to y-axis is $x=0$

Asymptotes are

$$
\begin{align*}
x & =0
\end{aligned} \text {-(1) } \begin{aligned}
& x+y+1=0 \tag{1}\\
& x-y-1 \text { - (2) } \tag{2}\\
& x \tag{3}
\end{align*}
$$

Multiply (1), (11) 4 (iii)

$$
\begin{aligned}
& x(x+y+1)(x-y-1)= \\
& \left(x^{2}+x y+x\right)(x-y-1)
\end{aligned}
$$

$$
\begin{align*}
&=x^{3}-x^{2} / y-x^{2}+x^{2} / y-x y^{2}-x y \\
&+x^{2}-x y-x \\
&=x^{3}-x y^{2}-2 x y-x-\text { (IV) } \tag{iv}
\end{align*}
$$

subtract (10) from given Curve.

$$
\begin{gathered}
x^{3}-x y^{2}-2 x y+2 x-y-1-x^{3}+x y^{2}+ \\
2 x-y+x \\
3 x-y-1=0
\end{gathered}
$$

\Rightarrow Asymptotes cut the Curve inpoints which lies on $3 x-y-1=0$

No. of Points are $n(n-2)$

$$
3(3-2)=3
$$

2) Asymptotes Cut the Curve in three points which lies on.
$3 x-y-1=0$ Hence Proved
