Calculus II

$$
\begin{array}{r}
y=? \\
\frac{d y}{d x}=? \frac{d^{2} y}{d x^{2}} \\
\frac{d^{3} y}{d x^{3}} \neq 0=\text { exists Point of inflexion }
\end{array}
$$

Prove that the curve $y=e^{x}$ is Concave up ward for all $x \in R$.

Sol.

$$
\begin{aligned}
& y=e^{x} \\
& \frac{d y}{d x}=e^{x} \\
& \frac{d^{2} y}{d x^{2}}=e^{x}>0 \quad x \in \mathbb{R}
\end{aligned}
$$

$$
\frac{d^{2} y}{d x^{2}} \geq 0 \quad \forall x \in \mathbb{R}
$$

\therefore The curve is Concave upward.

Prove that the Curve $y=\log x$ is everywhere Concave downward for $x>0$

Sol

$$
\begin{aligned}
& y=\log x \\
& \frac{d y}{d x}=\frac{1}{x} \\
& \frac{d^{2} y}{d x^{2}}=\frac{-1}{x^{2}}<0 \\
& \frac{d^{2} y}{d x^{2}}<0 \text { for } x>0
\end{aligned}
$$

\therefore The curve is Convex (Concave downward)

Show that origin is the point of inflexion of the leave $y=x^{y_{3}}$
Sot
$=$

$$
\begin{aligned}
& y=x^{1 / 3} \\
& \frac{d y}{d x}=\frac{1}{3} x^{-2 / 3} \\
& \frac{d^{2} y}{d x^{2}}=\frac{1}{3}\left(\frac{-2}{3}\right)\left(x^{-5 / 3}\right)
\end{aligned}
$$

$$
\frac{d^{2} y}{d x^{2}}=\frac{-2}{9} x^{-5 / 3}
$$

$\frac{d^{2} y}{d x^{2}}$ does not exist at $x=0$

$$
\text { for } \begin{array}{rlrl}
x & >0 & \frac{d^{2} y}{d x^{2}} & <0 \\
x & <0 & \frac{d^{2} y}{d x^{2}}>0
\end{array}
$$

$\therefore 0$ is point of inflexion

$$
\begin{aligned}
& y=x^{1 / 3} \\
& y=0
\end{aligned}
$$

$(0,0)$ origin is a point of inflexion of the curve $y=x^{1 / 3}$

