THEORY OF EQUATIONS
Common Roots
Find the Common roots of equations

$$
\begin{aligned}
& x^{4}-7 x^{2}+1=0 \\
& x^{3}-2 x^{2}-2 x+1=0
\end{aligned}
$$

solve them completely.
Sol

$$
\begin{aligned}
& x^{4}-7 x^{2}+1=0 \\
& x^{3}-2 x^{2}-2 x+1=0
\end{aligned}
$$

$$
\begin{align*}
& x ^ { 3 } - 2 x ^ { 2 } - 2 x + 1 \longdiv { x _ { 4 } ^ { 4 } - 7 x ^ { 2 } + 1 } \\
& \frac{-x^{4}-2 x^{3}=2 x^{2}+x}{2 x^{\beta}-5 x^{2}-x+1} \\
& \frac{2 x^{3}-4 x^{2}+4 x+2}{\left(x^{2}+3 x-1\right) \frac{x^{3}}{3}-2 x^{2}-2 x+1} \\
& \begin{array}{r}
-\frac{x^{3}-3 x^{2}+x}{x^{2}-3 x+1} \\
\frac{-\frac{x^{2}-3 x+1}{x}}{}
\end{array} \\
& \text { g.c. } d \text { of (1) \& (11) is } \\
& x^{2}-3 x+1 \tag{ii1}
\end{align*}
$$

\therefore Common roots of (1) 4(1) are givany. (11)

$$
\begin{align*}
& x=\frac{3 \pm \sqrt{9-4(1)(1)}}{2} \quad a x^{2}+b x+c=0 \\
& x=\frac{3 \pm \sqrt{5}}{2}
\end{align*}
$$

\therefore Common Root are $\frac{3 \pm \sqrt{5}}{2}$
e). (1) is $x^{4}-7 x^{2}+1=0$

$$
\begin{array}{r}
\text { g.c.d divides © } x^{2}+3 x+1 \\
\Rightarrow x^{2}-3 x+1 \sqrt{x^{4}-7 x^{2}+1} \\
\frac{-3 x^{4}-3 x^{2}}{3 x^{3}-8 x^{2}+1} \\
\frac{-8 x^{3} \mp 9 x^{2} \pm 3 x}{x^{2}=3 x+1} \\
x^{2} \frac{-3 x+1}{x}
\end{array}
$$

Other roots of eq (1) are giventy

$$
\begin{align*}
& x^{2}+3 x+1=0 \\
& x=\frac{-3 \pm \sqrt{9-4(1)(1)}}{2(1)} \quad a x^{2}+b x+c=0 \\
&= \frac{-3 \pm \sqrt{5}}{2} \text {-(v) } \\
& \therefore \text { from } 4 \text { (1) } 4 \text { (1) } \tag{v}
\end{align*}
$$

Roots of eq. (1) are

$$
\frac{3 \pm \sqrt{5}}{2}, \frac{-3 \pm \sqrt{5}}{2}
$$

eq. (11) is

$$
x^{3}-2 x^{2}-2 x+1=0
$$

G.C.d divides (1)

$$
\begin{gathered}
x^{2}-3 x+1 \sqrt{x^{2}-2 x^{2}-2 x+1} \\
\frac{-x^{2}-3 x^{2}+x}{\frac{x^{2}-3 x+1}{x+1}} \\
\frac{x^{2}-3 x+1}{x}
\end{gathered}
$$

other roots of eq (11) are givenby

$$
\begin{align*}
& x+1=0 \\
& x=-1 . \tag{ii1}
\end{align*}
$$

Roots of er are

$$
\frac{3 \pm \sqrt{5}}{2},-1 \quad \text { from (11) } f(1)
$$

