THEORY OF EQUATIONS
Construct a polynomial equation over rationals of degree 4 whose roots are $\sqrt{3}$ and $1+2 i$
Sol. Let the revinired eq is $f(x)=0$
The Given roots are $\sqrt{3}, 1+2 i$
In an el. with rational corf.,
irrational roots occur in Conjugate Pare.
$\Rightarrow \quad-\sqrt{3}$ is also root of $f(x)=(11$
In an el. with real coff, imaginary root occur in Conjugate paris.
$\Rightarrow 1-2 i$ is also root of $f(x)=0$
from (I). (II) and (II)
Roots of $f(x)$ are

$$
\begin{aligned}
& \sqrt{3},-\sqrt{3}, 1+2 i, 1-2 i \\
& \Rightarrow \quad(x-\sqrt{3}),(x+\sqrt{3}),(x-(1+2 i)) \\
&(x-(1-2 i)) \text { are factors } \\
&(x)
\end{aligned}
$$

\Rightarrow Required eq is

$$
f(x)=(x-\sqrt{3})(x+\sqrt{3})(x-(1+2 i))(x-(1-2 i)
$$

$$
\begin{aligned}
& =\left(x^{2}-3\right)[(x-1)-2 i][(x-1)+2 i] \\
& =\left(x^{2}-3\right)\left((x-1)^{2}-(2 i)^{2}\right) \\
& =\left(x^{2}-3\right)\left(x^{2}+1-2 x+4\right)\left[\because i^{2}=-1\right] \\
& =\left(x^{2}-3\right)\left(x^{2}-2 x+5\right) \\
& =x^{4}-3 x^{2}-2 x^{3}+6 x+5 x^{2}-15
\end{aligned}
$$

$$
\begin{aligned}
& =x^{4}-2 x^{3}+2 x^{2}+6 x-15 \\
& x^{4}-2 x^{3}+2 x^{2}+6 x-15=0 \text { is the }
\end{aligned}
$$

reni, red cl.

