THEORY OF EQUATIONS

Construct a polynomial Eluation over rationals of degree 4 whose roots are (I) and (I+ 2i) Let the retained el is f(x)=0 The Given roots are 53, 1+2in In an el. with rational Coeff., irrational roots occur in Conjugate Paire

=)
$$-\int_3^3$$
 is also root of $f(x) = 0$
In an el. with real coeff, imaginary
groot occur in Conjugate pais.
=) $1-\Im i$ is also root of $f(x) = 0$

from (1), (1) and (1) Roots of f(x) are

$$53$$
, -53 , $1+di$, $1-di$
=) $(x - 53)$, $(x + 53)$, $(x - (1+di))$
 $(x - (1-di))$ are factors
of $f(x)$
=) Remixed e1, u

P(n)= (x-53) (x+53) (x-(1+2i)) (x-(1-2i))

$$= (x^{2}-3)(x^{2}+1-2x+4)[::i^{2}-1]$$

$$= (x^{2}-3)(x^{2}-2x+5)$$

 $= (x^2 - 3)[(x - 1) - 2i][(x - 1) + 2i]$

= $(x^{2}-3)((x-1)^{2}-(2i)^{2})$ (deas-

 $= \chi^4 - 3\chi^2 - 2\chi^3 + 6\chi + 5\chi^2 - 15$

$$= \chi^{4} - 2 \chi^{3} + 2\chi^{2} + (\chi - 15)$$

$$\chi^{4} - 2\chi^{3} + 2\chi^{2} + (\chi - 15) = 0 \text{ is the}$$
retuinted el.