THEORY OF EQUATIONS
Solve the el.

$$
6 x^{4}-13 x^{3}-35 x^{2}-x+3=0
$$

Which has a root $2-\sqrt{3}$.
Sol. Given e\% is

$$
6 x^{4}-13 x^{3}-35 x^{2}-x+3=0
$$

Now Given Root is $2-\sqrt{3}$.
Which is a irrational root

In an. eq. with rational coff irrational roots occur in Conjugate pairs.
$\Rightarrow 2+\sqrt{3}$ is also root of (1)
$\Rightarrow(x-(2-\sqrt{3}))_{1}(x-(2+\sqrt{3}))$ are factors
Now $(x-(2-\sqrt{3}))^{\text {of (1) }}(x-(2+\sqrt{3}))$ is

$$
\begin{align*}
& {[(x-2)+\sqrt{3}][(x-2)-\sqrt{3}] } \\
= & (x-2)^{2}-(\sqrt{3})^{2} \\
= & x^{2}+4-4 x-3 \\
= & x^{2}-4 x+1 \\
\therefore & x^{2}-4 x+1 \text { divides } \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& x ^ { 2 } - 4 x + 1 \longdiv { 6 x ^ { 4 } - 1 3 x ^ { 3 } - 3 5 x ^ { 2 } - x + 3 } \quad 6 x ^ { 2 } + 1 1 x \\
& +3 \\
& \frac{6 x^{4}-24 x^{3}+6 x^{2}}{11 x^{8}-41 x^{2}-x+3} \\
& 11 x^{3}-44 x^{2}+11 x \\
& \frac{-3 / x^{2}-12 x+3}{x}
\end{aligned}
$$

\therefore The other roots of el (1) is given by

$$
\begin{gathered}
6 x^{2}+11 x+3=0 \\
6 x^{2}+9 x+2 x+3=0 \\
3 x(2 x+3)+1(2 x+3)=0 \\
(3 x+1)(2 x+3)=0 \\
x=-1 / 3,-3 / 2
\end{gathered}
$$

