THEORY OF EQUATIONS
Isove that in an equation with
grational coeff, irrational roots
occur in conjugate pairs.
Inoof det
$$f(x) = 0$$
 is given polynomial.
Now Let $L + \int \beta$ is an irrational
roots of $f(x)$

also [x-(d+Sp)] is factor of f(x)-1 We have to prove that d-Sp is also root of f(x) s.t al ideas. [x - (d - JA)] is factor of f(x) Nov $[\chi - (\alpha + \beta)][\chi - (\alpha - \beta)]$ = [(x - x) - JB] [(x - x) + JB] = $(x - d)^2 - (\int \beta)^2 = (x - d)^2 - \beta$.

from (1)

$$f(x) = [(x - d)^{2} - \beta]Q(x)$$

$$f(x) = [x - (a + j\beta)][x - (a - j\beta)]Q(x)$$

$$\therefore (x - (a - j\beta)) is a factor of f(x)$$

$$= a - j\beta is also root of f(x)$$
Hence whenever $d + j\beta$ is root of $f(x)$
 $d - j\beta$ will be root of $f(x)$