THEORY OF EQUATIONS
Prove that in an equation with rational coff, irrational roots occur in conjugate pairs.
Proof $\operatorname{Let} f(x)=0$ is given polynomial.
Now Let $\alpha+\sqrt{\beta}$ is an irrational

$$
\begin{equation*}
\therefore f(\alpha+\sqrt{\beta})=0 \tag{1}
\end{equation*}
$$

roots of $f(x)$
also $\left[x-\left(\alpha+\delta_{\beta}\right)\right]$ is factor of $f(x)-$ (II) We have to prove that $\alpha-\sqrt{\beta}$ is also
root of $f(x)$ s.t

$$
[x-(\alpha-\sqrt{\beta})] \text { is factor of } f(x)
$$

Now

$$
\begin{aligned}
{[x} & -(\alpha+\sqrt{\beta}]][x-(\alpha-\sqrt{\beta})] \\
& =[(x-\alpha)-\sqrt{\beta}][(x-\alpha)+\sqrt{\beta}] \\
& =(x-\alpha)^{2}-(\sqrt{\beta})^{2}=(x-\alpha)^{2}-\beta .
\end{aligned}
$$

Divide $f(x)$ by $(x-2)^{2}-\beta$
Let Quotient is $Q(x)$ and Remainder

$$
R x+s .
$$

$$
f(x)=\left[(x-\alpha)^{2}-\beta\right] Q(x)+R x+s
$$

Now Put $x=\alpha+\sqrt{\beta}$.

$$
\begin{array}{r}
f(\alpha+5 \beta)=\left[(\alpha+s \beta-\alpha)^{2}-\beta\right] Q(\alpha+\sqrt{ } \beta)+ \\
R(\alpha+\sqrt{ })+s
\end{array}
$$

$$
\begin{aligned}
& \theta= R \alpha+R \sqrt{\beta}+s . \quad[f r o m \\
& \Rightarrow \quad R \alpha+s=0 \\
& \text { and } R \sqrt{\beta}=0 \\
& R=0
\end{aligned}
$$

Put $R=0$ in $R \alpha+S=0$

$$
s=0
$$

\therefore The remainder $R x+S=0$.
from (iii)

$$
\begin{aligned}
& f(x)=\left[(x-\alpha)^{2}-\beta\right] Q(x) \\
& f(x)=[x-(\alpha+J \beta)][x-(\alpha-\sqrt{\beta})] Q(x) \\
\therefore & (x-(\alpha-\sqrt{\beta})) \text { is a factor of } f(x)
\end{aligned}
$$

$\Rightarrow \alpha-\sqrt{\beta}$ is also root of $f(x)$
Hence whenever $\alpha+\sqrt{\beta}$ is root of $f(x)$
$\alpha-\int \beta$ will be root of $f(x)$

