THEORY OF EQUATIONS
Prove that in a_{n} equation with real Coff., imaginary roots (i.e. non-real Complex) always occur in Conjugate pairs.
Proof: Let $f(x)=0$ is given eq.
Let $\alpha+i \beta$ is root of $f(x)$ where $\beta \neq 0$
We have to prove that $\alpha-i \beta$ is also
root of $f(x)$
$(x-(\alpha-i \beta)]$ is factor of $f(x)$
Now $\alpha+i \beta$ is root of $f(x)$
$\therefore[x-(\alpha+i \beta)]$ is factor of $f(x)$
also $f(\alpha+i \beta)=0$

$$
\begin{align*}
{[x-(\alpha+i \beta)][x-(\alpha-i \beta)] } & =[(x-\alpha)-i \beta][(x-\alpha)+i \beta] \tag{1}\\
& =(x-\alpha)^{2}-i^{2} \beta^{2}
\end{align*}
$$

$$
=(x-\alpha)^{2}+\beta^{2}
$$

Now divide $f(x)$ by $(x-\alpha)^{2}+\beta^{2}$
Let Owotient $Q(x)$ and Remainder is $R x+S$

$$
\begin{equation*}
f(x)=\left[(x-\alpha)^{2}+\beta^{2}\right] Q(x)+R x+s \tag{1}
\end{equation*}
$$

from (1)

$$
\begin{aligned}
f(\alpha+i \beta) & =0 \\
\quad \text { unt } x & =\alpha+i \beta \text { in (1) }
\end{aligned}
$$

$$
\left.\begin{array}{rl}
f(\alpha+i \beta) & \left.=[\alpha+i \beta-\alpha)^{2}+\beta^{2}\right] Q(x)+R(\alpha+i \beta) \\
+s
\end{array}\right)
$$

equate real and imaginary Parts

$$
\begin{align*}
R \alpha+s & =0 \tag{III}\\
R \beta & =0 \\
R & =0
\end{align*}
$$

Put $R=0$ in (III)

$$
\begin{aligned}
S & =0 . \\
\text { Remainder } & =R x+S=0
\end{aligned}
$$

Put $R_{x}+s=0$ in (11)

$$
\begin{aligned}
& f(x)=\left[(x-\alpha)^{2}+\beta^{2}\right] Q(x) \\
&=[x-(\alpha+i \beta)][x-(\alpha-i \beta)] Q(x) \\
& \Rightarrow(x-(\alpha-i \beta)) \text { is factor of } f(x)
\end{aligned}
$$

$\therefore \alpha-i \beta$ is root of $f(x)$
\therefore Whenever $\alpha+i \beta$ is root of $f(x)$ $\alpha-i \beta$ is also root of $f(x)$
Hence imaginaly roots of eq with real Cocff always occur in Conjugate Pairs.
Hence Proved
\$

