Plane Geometry Parabola Important Questions (PYQ)
If the normal at a point P of Parabola $y^{2}=8 x$ meets its axis at G, show that the locus of the middle point of PG is Parabola. Find the coordinates of its vertex.

Sol. $y^{2}=8 x$ (Give)
Let P is

$$
\left(a t^{2}, 2 a t\right)
$$

So P is $\left(2 t^{2}, 4 t\right)$

$$
y^{2}=8 x
$$

Normal at P is
Compare with

$$
y^{2}=4 a x
$$

$$
\begin{align*}
& y=-t x+2 a t+a t^{3} \\
& y=-t x+4 t+2 t^{3} \tag{1}
\end{align*}
$$

$4 a=8$
$a=2$

Normal meets the axis of paraboliat G i.e. $\quad y=0$
from (1) $\quad 0=-t x+4 t+2 t^{3}$

$$
\begin{aligned}
& t x=4 t+2 t^{3} \\
& x=4+2 t^{2}
\end{aligned}
$$

$\therefore G$ is $\left(4+2 t^{2}, 0\right) \quad P$ is $\left(2 t^{2}, 4 t\right)$
\therefore Mid Point of PG is

$$
\left(x_{1}, y_{1}\right)=\left(\frac{2 t^{2}+4+2 t^{2}}{2}, \frac{4 t}{2}\right)
$$

$$
\begin{aligned}
&=\left(2 t^{2}+2,2 t\right) \\
& x_{1}=2 t^{2}+2-(2) \\
& y_{1}=2 t-(3) \\
& t=\frac{y_{1}}{2} y \\
& \text { from(3) } \\
& P_{\text {ut }}=\frac{y_{1}}{2} \text { in (2) } \\
& x_{1}=\frac{2 y_{1}^{2}}{4}+2
\end{aligned}
$$

$$
\begin{align*}
& x_{1}=\frac{y_{1}^{2}}{2}+2 \\
& 2 x_{1}=y_{1}^{2}+4 \\
& y_{1}^{2}=2 x_{1}-4 \\
& y_{1}^{2}=2\left(x_{1}-2\right) \tag{4}
\end{align*}
$$

Lolus of $\left(x_{1}, y_{1}\right)$ is $y^{2}=2(x-2)$ thich is eq . of a Parabola Let $y=y \quad x-2=x$.
from (3) $\quad y^{2}=2 x$.
which is eq. of a right handel Parabola.
vertex of (3) is $(0,0)$

$$
\begin{array}{cc}
x=0 & y=0 \\
x-2=0 & y=0 \\
x=2 & y=0 \\
\therefore \text { vertex is } & (2,0)
\end{array}
$$

(2) Prove that the locus of middle points of the system of Parallax chords of a Parabola is a straight line paroled to axis.
Sol. Let $y^{2}=4 a x$ is the

$\operatorname{Let}(x, y$,$) is the mid-point of$ any chord of system. eq. of chord is

$$
\begin{gather*}
y y_{1}-2 a\left(x+x_{1}\right)=y_{1}^{2}-4 a x_{1} \\
y y_{1}-2 a x-2 a x_{1}=y_{1}^{2}-4 a x_{1} \\
y y_{1}=y_{1}^{2}-2 a x_{1}+2 a x_{1} \\
y=\frac{2 a}{y_{1}} x+\frac{y_{1}^{2}-2 a x_{1}}{y_{1}}- \tag{1}
\end{gather*}
$$

slopoof (1) is

$$
\begin{aligned}
& m=\frac{2 a}{y_{1}} \\
& y_{1}=\frac{2 a}{m}
\end{aligned}
$$

\therefore Lokes $f\left(x_{1}, y_{1}\right)$ is

$$
y=\frac{2 a}{m}
$$

Which is the el. of straignt line 11 to

Also x-axis is axis of Pardon

$$
y^{2}=4 a x
$$

Hence Locus of mid Point of systan of Paraleal chords of a Pardon is a line II to axis. Hence Propel

