Plane Geometry Parabola
Full Chapter Revision
Parabola: A Parabola is the Qiregnix
locus of a point which moves so that its distance from a fixed point is equal to its distance from a fixed axis vortex medium straight line.

$$
y^{2}=4 a x
$$

Focus $(a, 0)$
vertex $(0,0)$

$$
\text { axis } y=0
$$

Directrix $x=-a$

tangent at vertex $x=0$
Laths Rectum $x=a$.
Length of length Rectum $=4 a$ end points of latus rectum $=(a, \pm 2 a)$

Tangent to the Parabola

$$
y y_{1}=2 a\left(x+x_{1}\right)
$$

Condition of tangency.

$$
\begin{gathered}
y=m x+c \quad y^{2}=4 a x . \\
c=\frac{a}{m}
\end{gathered}
$$

Point of Contact $\left(\frac{a}{m^{2}}, \frac{2 a}{m}\right)$
line $l x+m y+n=0 \quad y^{2}=4 a x$.
Comtion of tangency.

$$
a m^{2}=\ln .
$$

Point of Contact $\left(\frac{n}{l}, \frac{-2 a m}{l}\right)$
Equation of Normal at $(x, y$,

$$
y-y_{1}=\frac{-y_{1}}{2 a}\left(x-x_{1}\right)
$$

Condition of Normality.

$$
\begin{array}{r}
y=m x+c \quad y^{2}=4 a x . \\
c=-2 a m-a m^{3}
\end{array}
$$

Root of Normal. $\left(a m^{2},-2 a m\right)$
Chord of Contact

$$
y y_{1}=2 a\left(x+x_{1}\right)
$$

Polar:- Pathol Q

$$
\text { pole } \frac{y y_{1}=2 a\left(x+x_{1}\right)}{\left(\frac{n}{l}, \frac{-2 a m}{l}\right)}
$$

Conjugate lines

$$
d x+m y+n=0 \quad e^{\prime} x+m^{\prime} y+n^{\prime}=0
$$

Conjugate. $\quad n l^{\prime}+l n^{\prime}=2 a \mathrm{~mm}$

Joint equation of tangents from exterior Point $\left(x_{1}, y_{n}\right)$

$$
\left(y^{2}-4 a x\right)\left(y_{1}^{2}-4 a x_{1}\right)=\left(y y_{1}-2 a\left(x+x_{1}\right)^{2}\right.
$$

Elevation of chord of parabole having mid-point $\left(x_{1}, y_{1}\right)$

$$
\begin{array}{r}
y y_{1}-2 a\left(x+x_{1}\right)=y_{1}^{2}-4 a x_{1} \\
y y_{1}-2 a x=y_{1}^{2}-2 a x_{1}
\end{array}
$$

Diameter:

- $l l$ to x-axis
- Tangent drawn
to eatrimity of

diameter is 11 to chords
Tangent drawn at the end points of 11 chords mat on diameter

Para metric representation of Parabola.

$$
\begin{gathered}
y^{2}=4 a x \\
x=a t^{2} \quad y=2 a t
\end{gathered}
$$

equation of chord joint $t_{1} \& t_{2}$

$$
\left(t_{1}+t_{2}\right) y=2 x+2 a t_{1} t_{2}
$$

Tangent at point t (at $\left.{ }^{2}, 2 a t\right)$

$$
t y=x+a t^{2}
$$

Normal at point 't'

$$
y=-t x+2 a t+a t^{3}
$$

The point of intersection of tangents at $\quad t_{1} \quad \& \quad t_{2} \quad\left(a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right)$

The chord joining $t_{1} \& t_{2}$ is the focal chord of Parabola. if

$$
t_{1} t_{2}=-1
$$

Subtangent he and subnormal
vertex Bisects the
Sub tang gent

Subnormal $=1 / 2$ Latus Reltum.

