Plane Geometry Parabola Important Questions (PYQ)
Prove that the tangents at the end of a latus rectum of a

- parabola intersect on the directrix at right angles.

Sol. Tangent at Point $P(a, 2 a)$

$$
\begin{align*}
& y y_{1}=2 a\left(x+x_{1}\right) \\
& 2 a y=2 a(x+a) \\
& x-y+a=0 \tag{1}
\end{align*}
$$

eq. of Tangent at point $Q(a,-2 a)$ is

$$
\begin{aligned}
& y y_{1}=2 a\left(x+x_{1}\right) \\
& y(-2 a)=2 a(x+a)
\end{aligned}
$$

$$
\begin{equation*}
x+y+a=0 \tag{11}
\end{equation*}
$$

Add (1) \& (1)

$$
\begin{gathered}
x-y+a+x+y+a=0 \\
2 x+2 a=0 \\
x=-a
\end{gathered}
$$

Put $x=-a$ in (1)

$$
y=0
$$

Point of intersection of tangents $(-a, 0)$
which lies on diretrix
slope of (1) $m_{1}=1$
slope of (2) $m_{2}=-1$.

$$
m_{1} m_{2}=-1 .
$$

\therefore Tangents are 1. - (4) Hence from (3) \& (4)

Tangenes at ends of latess rectum of
a Parabola intersect on the directrix at right angles.
Hence Proved.
(2) Show that normals at the extrimities of a lats rectum of a Parabola intersect at right angles on the axis of

Sol. Let Parabola

$$
y^{2}=4 a x
$$

end Laius Rectum $P(a, 2 a)$

$$
Q\left(a_{1}-2 a\right)
$$

Normal at Point $P(a, 2 a)$ is

$$
\begin{aligned}
y-y_{1} & =\frac{-y_{1}}{2 a}\left(x-x_{1}\right) \\
y-2 a & =\frac{-2 a}{2 a}(x-a)
\end{aligned}
$$

$$
\begin{align*}
& y-2 a=-x+a \\
& y+x-3 a=0
\end{align*}
$$

Normal at Point $Q(a,-2 a)$

$$
\begin{align*}
& y-y_{1}=\frac{-y_{1}}{2 a}\left(x-x_{1}\right) \\
& y-(-2 a)=\frac{-(-2 a)}{2 a}(x-a) \\
& y+2 a=x-a \\
& y-x+3 a=0 \quad \text { (1) } \tag{1}
\end{align*}
$$

Add (1) f (11)

$$
\begin{gathered}
y+x-3 a+y-x+3 k=0 \\
y=0 \\
\text { Put } y=0 \text { in (II) } \\
x=3 a .
\end{gathered}
$$

Point of intersection of (1) f (11) $(3 a, 0)$ which lies on x axis or axis of Parabola.

Slope of
slope of

$$
\begin{aligned}
& \text { (1) } m_{1}=-1 \\
& \text { (2) } m_{2}=1 \\
& m_{1} m_{2}=-1
\end{aligned}
$$

\therefore (1) 4 (ID) are 1
\Rightarrow Normals intersect at right angle
from (3) and (4)
The normals at the extrimities of the latus rectum of the parabola intersect at right angles on axis of Parabole

