Plane Geometry Parabola Important Questions (PYQ)
Find the locus of the point such that two of the normals drown through it to the parabola. $y^{2}=4 a x$ are perpendicular to each other.

Sol. $\quad y^{2}=4 a x$ (Given)
Let $\left(x_{1}, y_{1}\right)$ isgivmpoint
The equation of normal through $\left(x_{1}, y_{1}\right)$

$$
\begin{align*}
& y=m x-2 a m-a m^{3} \\
& y_{1}=m x_{1}-2 a m-a m^{3} \\
& a m^{3}+2 a m-m x_{1}+y_{1}=0 \\
& a m^{3}+\left(2 a-x_{1}\right) m+y_{1}=0 \tag{1}
\end{align*}
$$

Let m_{1}, m_{2}, m_{3} are roots of (1)

$$
m_{1} m_{2} m_{3}=\frac{-y_{1}}{a}
$$

Alsotionormals are $1^{\text {a }}$ to each other (Given)

$$
\therefore \quad m_{1} m_{2}=-1
$$

$$
\text { from (11) }(-1) m_{3}=\frac{-y_{1}}{a}
$$

$$
m_{3}=\frac{y_{1}}{a}
$$

m_{3} is root of e?. (1).

$$
a\left(m_{3}\right)^{2}+\left(2 a-x_{1}\right) m_{3}+y_{1}=0
$$

$$
\begin{gathered}
a\left(\frac{y_{1}}{a}\right)^{3}+\left(2 a-x_{1}\right) \frac{y_{1}}{a}+y_{1}=0 \\
\frac{y_{1}^{3}}{a^{2}}+\left(2 a-x_{1}\right) \frac{y_{1}}{a}+y_{1}=0 \\
\frac{y_{1}}{a}\left(\frac{y_{1}^{2}}{a}+\left(2 a-x_{1}\right)+a\right)=0 \\
y_{1}^{2}+\left(2 a-x_{1}\right) a+a^{2}=0 \\
y_{1}^{2}+2 a^{2}-a x_{1}+a^{2}=0 \\
y_{1}^{2}-a x_{1}+3 a^{2}=0
\end{gathered}
$$

tolus of $\left(x_{1}, y_{1}\right)$ is

$$
y^{2}-a x+3 a^{2}=0
$$

which is required docks.
(2) Prove that the locus of poles of chords which are normal to the parabola $y^{2}=4 a x$ is the Curve

$$
y^{2}(x+2 a)+4 a^{3}=0
$$

Sol $y^{2}=4 a x$ is the Parabola.
e\%. of normal to the Parabola.

$$
\begin{equation*}
y=m x-2 a m-a m^{3} \tag{1}
\end{equation*}
$$

Let $\left(x_{1}, y_{1}\right)$ be the pole
eq. of polar at $\left(x_{1}, y_{1}\right)$

$$
\begin{align*}
& y y_{1}=2 a\left(x+x_{1}\right) \\
& y y_{1}=2 a x+2 a x_{1} \tag{2}
\end{align*}
$$

el. (1) and (2) represent the bare lines.

$$
\begin{array}{rl}
\therefore \quad \frac{y_{1}}{1}=\frac{2 a}{m}= & \frac{2 a x_{1}}{-2 a m-a m^{3}} \\
m y_{1}=2 a & 2 a\left(-2 a m-a m^{3}\right)=2 a m x_{1} \\
m=\frac{2 a}{y_{1}} \quad & -2 a m-a m^{3}=m x_{1} \\
& m x_{1}+2 a m+a m^{3}=0 \\
& x_{1}+2 a+a m^{2}=0
\end{array}
$$

$$
\begin{aligned}
& x_{1}+2 a+a\left(\frac{2 a}{y_{1}}\right)^{2}=0 \\
& x_{1}+2 a+a \times \frac{4 a^{2}}{y_{1}^{2}}=0 \\
& y_{1}^{2} x_{1}+2 a y_{1}^{2}+4 a^{3}=0 \\
& 4 a^{3}+\left(x_{1}+2 a\right) y_{1}^{2}=0 \\
& \text { Locus of }\left(x_{1}, y_{1}\right) \text { is } \\
& (x+2 a) y^{2}+4 a^{3}=0 \text { Hence Proved }
\end{aligned}
$$

(3) Prove that in a Parabola chord of Contact of tangents at right angles passes through the focus.
Sol Led Parable
$y^{2}=4 a x$
Tangent of $P \& Q$

intersect at right angle (liven)
\therefore Point of intersection R lies on directrix.
Let R is $\left(-a, y_{1}\right)$
Chord of Contact of $R\left(-a, y_{1}\right)$ is

$$
\begin{align*}
& y y_{1}=2 a\left(x+x_{1}\right) \\
& y y_{1}=2 a(x-a) \tag{1}
\end{align*}
$$

(1) Passes through focus $(a, 0)$ if

$$
(0) y_{1}=2 a(a-a)
$$

$0=0$ which is true.
Hence chord of Contact passes through focus.
(4) Prove that the locus of middle points of normal chords of Parabola $y^{2}=4 a x$ is

$$
\frac{y^{2}}{2 a}+\frac{4 a^{3}}{y^{2}}=x-2 a
$$

Sol. Parabola is

$$
y^{2}=4 a x
$$

el. of Normal of
Parabola.

$$
y=m x-2 a m-a m^{3}
$$

-(1)
Let $\left(x_{1}, y_{1}\right)$ is mid-point of (1)
eq of Chored havind mid-point $\left(x_{1}, y_{1}\right)$

$$
\begin{gather*}
y y_{1}-2 a\left(x+x_{1}\right)=y_{1}^{2}-4 a x_{1} \\
y y_{1}-2 a x-2 a x_{1}=y_{1}^{2}-4 a x_{1} \\
y y_{1}-2 a x=y_{1}^{2}-2 a x_{1} \\
y y_{1}=y_{1}^{2}-2 a x_{1}+2 a x^{2} \tag{1}
\end{gather*}
$$

(1) and (1) reprebent the bame linie.

$$
\therefore \frac{y_{1}}{1}=\frac{2 a}{m}=\frac{y_{1}^{2}-2 a x_{y}}{-2 a m-a m^{3}}
$$

$$
\begin{gathered}
y_{1} m=2 a \\
m=\frac{2 a}{y_{1}} \\
2 a\left(-2 a m-a m^{3}\right)=m\left(y_{1}^{2}-2 a x_{1}\right) \\
m a\left(-4 a^{2}-2 a^{2} m^{2}\right)=p\left(y_{1}^{2}-2 a x_{1}\right) \\
-4 a^{2}-2 a^{2} \cdot\left(\frac{2 a}{y_{1}}\right)^{2}=y_{1}^{2}-2 a x_{1} \\
-4 a^{2}-\frac{8 a^{4}}{y_{1}{ }^{2}}=y_{1}^{2}-2 a x_{1}
\end{gathered}
$$

$$
\begin{aligned}
2 a x_{1}-4 a^{2} & =y_{1}^{2}+\frac{8 a^{4}}{y_{1}^{2}} \\
2 a\left(x_{1}-2 a\right) & =2 a\left(\frac{y_{1}^{2}}{2 a}+\frac{4 a^{3}}{y_{1}^{2}}\right) \\
x_{1}-2 a & =\frac{y_{1}^{2}}{2 a}+\frac{4 a^{3}}{y_{1}^{2}}
\end{aligned}
$$

\therefore locus of $\left(x_{1}, y_{1}\right)$ is

$$
x-2 a=\frac{y^{2}}{2 a}+\frac{4 a^{3}}{y^{2}} \text { Hence proved. }
$$

