Plane Geometry
Pair Of Straight Lines
Full Chapter Revision and PYQ'S

* $\quad(a x+b y+c)\left(a^{\prime} x+b^{\prime} y+c^{\prime}\right)=0$
represents a pair of lines

$$
\begin{aligned}
& a x+b y+c=0 \\
& a^{\prime} x+b^{\prime} y+c^{\prime}=0
\end{aligned}
$$

\$ The second degree homogenous equation

$$
a x^{2}+2 h x y+b y^{2}=0
$$

- a Pair of distinct lines through origin

$$
h^{2}-a b>0
$$

- a line or Coincide limes through origin

$$
n^{2}-a b=0
$$

- an empty set if $h^{2}-a b<0$
$a x^{2}+2 h x y+b y^{2}=0$ represent two lines through origin.

$$
y=m_{1} x \quad y=m_{2} x .
$$

$$
\begin{aligned}
& m_{1}+m_{2}=\frac{-2 h}{b} \quad b m^{2}+2 n m+a=0 \\
& m_{1} m_{2}=\frac{a}{b} \quad \\
& x=1 \\
& y=m .
\end{aligned}
$$

θ between pair of lines

$$
\begin{aligned}
& a x^{2}+2 h x y+b y^{2}=0 \\
& \left.-\tan \theta=\left|\frac{2 \sqrt{n^{2}-a b}}{a+b}\right| \right\rvert\,
\end{aligned}
$$

- The lines $a x^{2}+2 h x y+b y^{2}=0$ are perpendicular when $a+b=0$
Coff. of $x^{2}+$ Coff of $y^{2}=0$
- The lines $a x^{2}+2 h x y+b y^{2}=0$ are Coincide when

$$
h^{2}-a b=0
$$

The Joint equation of straight lines Bisecting the angus between lines

$$
\begin{aligned}
& a x^{2}+2 h x y+b y^{2}=0 \text { is } \\
& \frac{x^{2}-y^{2}}{a-b}=\frac{x y}{h .}
\end{aligned}
$$

General second degree equation.

$$
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0
$$

represent the straight lines

$$
\begin{aligned}
& a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0 \\
& a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0
\end{aligned}
$$

reprebent pair of lines then joint equation of lines through origin and parallel to these lines

$$
a x^{2}+2 h x y+b y^{2}=0 \text {. }
$$

(1) Find the equation to the beraight lines bisecting the angles between the beraight lines given by $a x^{2}+2 h x y+b y^{2}=0$
Sob. Let $O A$ and $O B$ are twa lines $y=m_{1} x$ and $y=m_{2} x$

$$
\begin{align*}
& m_{1}=\tan \theta_{1} \\
& m_{2}=\tan \theta_{2} \\
& m_{1}+m_{2}=\frac{-2 n}{b}=\frac{a}{b} \\
& \left.\tan \theta_{1}+\tan \theta_{2}=\frac{-2 h}{b}\right] \\
& \tan \theta_{1} \tan \theta_{2}=a b_{b}^{c} \tag{1}
\end{align*}
$$

Let $O C$ is internal and $O D$ is External Bisector of $\angle A O B$.

$$
\begin{aligned}
& \text { Now } \angle A O C=\angle C O B \\
& \angle X O C-\theta_{1}=\theta_{2}-\angle X O C \\
& 2 \angle X O C=\theta_{1}+\theta_{2} \\
& \angle X O C=\frac{\theta_{1}+\theta_{2}}{2}
\end{aligned}
$$

$$
\angle X O D=\angle X O C+\angle C O D
$$

$$
=\frac{\theta_{1}+\theta_{2}}{2}+\left.\pi\right|_{2} \quad\left[\begin{array}{l}
\text { Angl between } \\
\text { interior and }
\end{array}\right.
$$

exterior Bisector is always 90°]
Let θ be the angle made by bisectors

$$
\text { with } x \text {-axis }
$$

either $\theta=\frac{\theta_{1}+\theta_{2}}{2}$ or $\theta=\frac{\theta_{1}+\theta_{2}}{2}+\pi / 2$

$$
\text { eithor } \begin{aligned}
2 \theta & =\theta_{1}+\theta_{2} \text { or } 2 \theta=\theta_{1}+\theta_{2}+\pi \\
\tan 2 \theta & =\tan \left(\theta_{1}+\theta_{2}\right) \\
& =\frac{\tan \theta_{1}+\tan \theta_{2}}{1-\tan \theta_{1} \tan \theta_{2}} \\
& =\frac{\frac{-2 h}{b}}{1-\frac{a}{b}} \quad[\text { from (1) }]
\end{aligned}
$$

$$
\begin{align*}
& =\frac{-2 h}{b-a}=\frac{2 h}{a-b} \\
& \tan 2 \theta=\frac{2 h}{a-b} \\
& \frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{2 h}{a-b} \tag{2}
\end{align*}
$$

equation of bisector is $y=\tan \theta x$.

$$
\tan \theta=\left.y\right|_{x}
$$

Put value of $\tan \theta$ in (2).

$$
\begin{aligned}
& \frac{2 y \mid x_{x}}{1-y^{2} \mid x^{2}}=\frac{2 h}{a-b} \\
& \frac{y}{x \frac{\left(x^{2}-y^{2}\right)}{x^{2}}}=\frac{h}{a-b} \\
& \frac{x y}{x^{2}-y^{2}}=\frac{h}{a-b .}
\end{aligned}
$$

$$
\frac{x^{2}-y^{2}}{a-b}=\frac{x y}{n}
$$

(2) show that the equation

$$
x^{2}+2 \sqrt{3} x y+3 y^{2}-3 x-3 \sqrt{3} y-4=0
$$

represent a pair of parallel lines Find the distance between them.
Sot. $\quad x^{2}+2 \sqrt{3} x y+3 y^{2}-3 x-3 \sqrt{3} y-4=0$

$$
\begin{aligned}
x^{2} & +(2 \sqrt{3} y-3) x+3 y^{2}-3 \sqrt{3} y-4=0 \\
x & =\frac{-(2 \sqrt{3} y-3) \pm \sqrt{(2 \sqrt{3} y-3)^{2}-4(1)\left(3 y^{2}-3 \sqrt{3} y-4\right)}}{2} \\
& =\frac{-2 \sqrt{3} y+3 \pm \sqrt{12 x^{2}+9-12 \sqrt{3} y-12 y^{2}+12 \sqrt{3} y}+16}{2} \\
& =\frac{-2 \sqrt{3} y+3 \pm \sqrt{25}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{-2 \sqrt{3} y+3 \pm 5}{2} \\
& x=\frac{-2 \sqrt{3} y+8}{2}, \frac{-2 \sqrt{3} y-2}{2} \\
& x+\sqrt{3} y-4=0, x+\sqrt{3} y+1=0
\end{aligned}
$$

slope of (1) is $\frac{-1}{\sqrt{3}}$.
slope of (2) is $\frac{-1}{\sqrt{3}}$.
slope of $0=$ slope of (2) $=\frac{-1}{\sqrt{3}}$
\therefore lines (1) and (11) are parallel

Put $y=0$ in (1)

$$
x=4 .
$$

Point A is $(4,0)$

\therefore Distance from $(4,0)$ to (2)

$$
\frac{4+0+1}{\sqrt{1+3}}=\frac{5}{2} \text { Ans. }
$$

(3) If $P_{1} P_{2}$ are the lengths of perpendiculess drawn from the point $(-1,2)$ to the pair of lines given by the equation

$$
2 x^{2}-5 x y+2 y^{2}+3 x-3 y+1=0
$$

Prove that $P_{1} P_{2}=\frac{12}{5}$
Sol.

$$
\begin{aligned}
& 2 x^{2}-5 x y+2 y^{2}+3 x-3 y+1=0 \\
& 2 x^{2}+(-5 y+3) x+2 y^{2}-3 y+1=0
\end{aligned}
$$

$$
\begin{aligned}
x & =\frac{-(-5 y+3) \pm \sqrt{(-5 y+3)^{2}-4(2)\left(2 y^{2}-3 y+1\right)}}{4} \\
& =\frac{5 y-3 \pm \sqrt{25 y^{2}+9-30 y-16 y^{2}+24 y-8}}{4} \\
& =\frac{5 y-3 \pm \sqrt{9 y^{2}-6 y+1}}{4} \\
& =\frac{5 y-3 \pm \sqrt{(3 y-1)^{2}}}{4}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{5 y-3+3 y-1}{4}, \frac{5 y-3-3 y+1}{4} \\
& =\frac{8 y-4}{4}, \frac{2 y-2}{4} \\
& =2 y-1, \frac{y-1}{2}
\end{aligned}
$$

$$
\begin{align*}
& x=2 y-1 \\
& x-2 y+1=0 \tag{1}\\
& 2 x-y+1=0 \tag{2}
\end{align*}
$$

1 distance of (1) from $(-1,2)$

$$
P_{1}=\frac{|-1-4+1|}{\sqrt{1+4}}=\frac{4}{\sqrt{5}}
$$

P_{2} is \perp distance of (2) from $(-1,2)$

$$
\begin{aligned}
& P_{2}=\frac{|-2-2+1|}{\sqrt{4+1}}=\frac{3}{\sqrt{5}} \\
& P_{1} P_{2}=\frac{4}{\sqrt{5}} \times \frac{3}{\sqrt{5}}=\frac{12}{5}
\end{aligned}
$$

Hence Proved.
(4) Find the bisectors of the angles between the limns joining the origin to the point of intersection of the beraight line $x-y=2$ with the - Curve

$$
5 x^{2}+11 x y-8 y^{2}+8 x-4 y+12=0
$$

$$
\begin{align*}
& \text { Sol. } \quad x-y=2 \\
& 5 x^{2}+11 x y-8 y^{2}+8 x \\
& -4 y+12=0 \tag{2}
\end{align*}
$$

$$
\begin{align*}
x-y & =2 \\
\frac{x}{2}-\frac{y}{2} & =1 . \tag{3}
\end{align*}
$$

use (3) to make (2) a homogeneons eq.

$$
\begin{gathered}
5 x^{2}+11 x y-8 y^{2}+8 x\left(\frac{x}{2}-\frac{y}{2}\right)-4\left(\frac{x}{2}-\frac{y}{2}\right) \\
+12\left(\frac{x}{2}-\frac{y}{2}\right)^{2}=0 \\
5 x^{2}+11 x y-8 y^{2}+4 x^{2}-4 x y-2 x y+2 y^{2} \\
+12\left(\frac{x^{2}}{4}+\frac{y^{2}}{4}-\frac{x y}{2}\right)=0
\end{gathered}
$$

$$
\begin{aligned}
& 5 x^{2}+11 x y-8 y^{2}+4 x^{2}-4 x y-2 x y+2 y^{2} \\
&+3 x^{2}+3 y^{2}-6 x y=0 \\
& 12 x^{2}-3 y^{2}-x y=0
\end{aligned}
$$

which is the joint equation of the lines through origin.
The equation of bisectors of the angles betweenthe limes is

$$
\begin{array}{l|l}
\frac{x^{2}-y^{2}}{a-b}=\frac{x y}{h .} & \begin{array}{l}
12 x^{2}-3 y^{2}-x y=0 \\
a x^{2}+2 h x y+b y^{2}=0 \\
a=12 \\
a=-3 \\
\frac{x^{2}-y^{2}}{12+3}=\frac{x y}{-1 / 2} \\
h=-112 . \\
\frac{x^{2}-y^{2}}{15}=-2 x y \\
x^{2}-y^{2}=-30 x y
\end{array}
\end{array}
$$

$$
x^{2}-y^{2}+30 x y=0
$$

which is the refuired eqeation:

