Plane Geometry Hyperbola
Chapter Revision
Standard form of Hyperbola.

Hyperbola	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Transverse axis elevation Length	$y=0$
Conjugate axis	$2 a$
elevation	of
length	$x=0$
Focus $\left(F_{1}\right)$	$2 b$.
$\left(F_{2}\right)$	$(a e, 0)$
	$(-a e, 0)$

Late Rectum equations	$x= \pm a e$
directrix	$x=a / e$
Length of	$+x=-a / e$
Latus Rectum	$\frac{2 b^{2}}{a}$
Centre	$(0,0)$
Asymptotes	$y= \pm \frac{b}{a} x$

Rectangular hyperbola
Length of transverse and Conjugate axis will be equal
eq. $\quad x^{2}-y^{2}=a^{2}$
eccentricity $=\sqrt{2}$
equation of
asymptotes - $x+y=0, x-y=0$

Conjugate Hyper tola
Two hyperbolas sit tremiverse and Conjugate axis of one are respectively loryugate and transure axis of other are called Conjugate hyperbola
$\operatorname{Exp} \quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \& \frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$ are Conjugate.

Equation of tangent

$$
\frac{x x_{y}}{a^{2}}-\frac{y y_{1}}{b^{2}}=1
$$

equation of Normal

$$
\frac{a^{2} x}{x_{1}}+\frac{b^{2} y}{y_{1}}=a^{2}+b^{2}
$$

Condition of tangency
Line $l x+m y+n=0$ is tangent to hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ if

$$
a^{2} l^{2}-b^{2} m^{2}=n^{2}
$$

$y=m x+c$ is tangent to hyperbola

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad \text { if } \\
& c^{2}=a^{2} m^{2}-b^{2}
\end{aligned}
$$

\therefore equation of tangent to hyperbola in slope form.

$$
y=m x \pm \sqrt{a^{2} m^{2}-b^{2}}
$$

Condition of Normality
$l x+m y+n=0$ is normal to hyperbole $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ if

$$
\frac{a^{2}}{l^{2}}-\frac{b^{2}}{m^{2}}=\frac{\left(a^{2}+b^{2}\right)^{2}}{n^{2}}
$$

Chord of Contact

$$
\frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}=1
$$

Equation of polar

Equation of Pair of tangents

$$
\left(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-1\right)\left(\frac{x^{2}}{a^{2}}-\frac{y_{1}^{2}}{b^{2}}-1\right)=\left(\frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}-1\right)^{2}
$$

Pol of line $l x+m y+n=0$

$$
\left(-\frac{a^{2} l}{n},-\frac{b^{2} m}{n}\right)
$$

Equation of chord in terms of mid point

$$
\frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}=\frac{x_{1}^{2}}{a^{2}}-\frac{y_{1}^{2}}{b^{2}}
$$

