Hermitian and Skew Hermitian Matrices
Important Questions (PYQ)
Transpose of Matrix

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \\
A^{\prime}=\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right] \\
\text { Symmetric Matrix } A=\left[\begin{array}{cc}
1 & -2 \\
-2 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& A^{\prime}=\left[\begin{array}{cc}
1 & -2 \\
-2 & 0
\end{array}\right]=A \\
& A^{\prime}=A
\end{aligned}
$$

symmetric Max six
Skew - symmetric Matrix.

$$
A^{\prime}=-A .
$$

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \\
A^{\prime} & =\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]=-\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]=-A
\end{aligned}
$$

$A^{\prime}=-A$ Skew symmetric Matrix.
\& Show that the Matrix $B^{\prime} A B$ is symmetric or skew symmetric according ab
A is symmetric or skew symmetric.
Proof A is symmetric

$$
\left(B^{\prime} A B\right)^{\prime}=B^{\prime}=A-A^{\prime}\left(B^{\prime}\right)^{\prime}
$$

$$
\begin{array}{rlr}
& \left.=B^{\prime} A^{\prime} B \quad \quad \quad \because\left(B^{\prime}\right)^{\prime}=B\right] \\
& =B^{\prime} A B \quad[\text { from (1) }] \\
\left(B^{\prime} A B\right)^{\prime} & =B^{\prime} A B &
\end{array}
$$

$\therefore B^{\prime} A B$ is symmetric.
Case II A is skew- symmetric.

$$
\begin{array}{r}
A^{\prime}=-A .-\left(B^{\prime} A B\right)^{\prime}=B^{\prime} A^{\prime}\left(B^{\prime}\right)^{\prime}
\end{array}
$$

$$
\begin{aligned}
& =B^{\prime} A^{\prime} B \\
& =B^{\prime}(-A) B \quad[\text { from (2) }] \\
& =-\left(B^{\prime} A B\right) \\
\left(B^{\prime} A B\right)^{\prime} & =-\left(B^{\prime} A B\right)
\end{aligned}
$$

Hence $B^{\prime} A B$ is skew -symmetric. Conjugate Matrix $\left[\begin{array}{cc}1 & -2 i \\ 4+i & 2\end{array}\right]$

$$
\bar{A}=\left[\begin{array}{cc}
1 & 2 i \\
4-i & 2
\end{array}\right]
$$

Tranjugate Matrix

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
1 & -2 i \\
4+i & 2
\end{array}\right] \\
A^{\prime} & =\left[\begin{array}{cc}
1 & 4+i \\
-2 i & 2
\end{array}\right] \\
A^{\theta}=\left(\overline{A^{\prime}}\right) & =\left[\begin{array}{cc}
1 & 4-i \\
2 i & 2
\end{array}\right]
\end{aligned}
$$

Is $(\bar{A})^{\prime}=\overline{\left(A^{\prime}\right)}$ Justify your Answer
Yes.
Justification $\quad A=\left[\begin{array}{cc}1+i & 3 i \\ 4 & 1-i\end{array}\right]$

$$
\begin{align*}
\text { L.H.S }(\bar{A})^{\prime} & \bar{A}
\end{align*}=\left[\begin{array}{cc}
1-i & -3 i \\
4 & 1+i \tag{1}
\end{array}\right]
$$

$$
\begin{align*}
A & =\left[\begin{array}{cc}
1+i & 3 i \\
4 & 1-i
\end{array}\right] \\
A^{\prime} & =\left[\begin{array}{cc}
1+i & 4 \\
3 i & 1-i
\end{array}\right] \\
\overline{\left(A^{\prime}\right)} & =\left[\begin{array}{cc}
1-i & 4 \\
-3 i & 1+i
\end{array}\right] \tag{11}
\end{align*}
$$

from (1) 4 (11)

$$
(\bar{A})^{\prime}=\left(\overline{A^{\prime}}\right)
$$

Hence Proved.

Hermitian Matrix

$$
\begin{aligned}
& \text { square } \quad A^{\theta}=A \text {. } \\
& A=\left[\begin{array}{cc}
1 & 4+3 i \\
4-3 i & 5
\end{array}\right] \\
& \text { Skew hermitian } \\
& \text { matrix } \\
& A^{\theta}=-A \\
& A^{\prime}=\left[\begin{array}{cc}
1 & 4-3 i \\
4+3 i & 5
\end{array}\right] \\
& a_{12}=4+3 i \\
& a_{21}=4-3 i \\
& \left(\overline{A^{\prime}}\right)=\left[\begin{array}{cc}
1 & 4+3 i \\
4-3 i & 5
\end{array}\right]=A \\
& \bar{a}_{21}=4+3 i \\
& a_{12}=\bar{a}_{21}
\end{aligned}
$$

hermitian $\quad a_{i j}=\bar{a}_{j i}$
Prove that the necessary and sufficient Condition for a matrix A to be hermitian is $A^{\theta}=A$
Proof A is hermitian

$$
\begin{equation*}
a_{i j}=\bar{a}_{j i} \tag{1}
\end{equation*}
$$

Now A is $n \times n$ matrix
$\therefore A^{\prime}$ is $n \times n$ matrix.
$\therefore\left(\overline{A^{\prime}}\right)$ is $n \times n$ matrix
$\therefore A^{\theta}$ is $n \times n$ matrix
$\therefore A^{0} \& A$ is of same type
Now $(i, j)^{\text {th }}$ element of $A=$ Complex Conjugate of
$(i, j)^{\text {the }}$ element of A°
=Complex Conjugate of
$(j, i)^{\text {th }}$ clement of A
$=$ Complex Conjugate of $a_{j i}$

$$
\begin{aligned}
& =\bar{a}_{j i} \\
& =a_{i j} \quad \text { from (1) } \\
& =(i, j)^{\text {th }} \text { element of } A .
\end{aligned}
$$

$\Rightarrow(i, j)^{\text {th }}$ element of $A=(i, j)^{\text {th }}$ element of A

$$
\begin{array}{ll}
\Rightarrow & A^{\theta}=A \\
\text { Part II } & \overline{\bar{\theta}}=A
\end{array}
$$

Let A is $m \times n$ matrix.
A^{\prime} is $n \times m$ matin
$A^{\theta}=\left(\bar{A}^{\prime}\right)$ is nom matrix.
But $A=A$.
$\therefore A^{\theta} f A$ is of same type.

$$
\therefore \quad n=m .
$$

$\Rightarrow A$ is $n \times n$ spare matrix.

$$
A^{\theta}=A
$$

$\Rightarrow(i, j)^{\text {th }}$ element of $A^{\theta}=(i, j)^{\text {th }}$ element of A
\Rightarrow Complex Conjugate of $(i, j)^{\text {th }}$ element of A^{\prime}

$$
=(i, j)^{\text {th }} \text { el max of } A
$$

\Rightarrow Complex Conjugate of $(j, i)^{\text {th }}$ element of A

$$
\bar{a}_{j i}=a_{i j} \quad=(i, j)^{\text {th }} \text { element of } A
$$

$\Rightarrow A$ is Hermitian.
A and B are hermitian. Show that $A B+B A$ is hermitian and $A B-B A$ is skew-hermitian.

Sol.
A and B are hermitian (Given)

$$
\begin{align*}
& \therefore A^{\theta}=A \quad B^{\theta}=B . \tag{1}\\
& (A B+B A)^{\theta}=\overline{(A B)^{\theta}}+(B A)^{\theta} \\
& =B^{\theta} A^{\theta}+A^{\theta} B^{\theta}
\end{align*}
$$

$$
\begin{aligned}
& =B A+A B \quad[\text { from } D] \\
& =A B+B A \\
(A B+B A) & =A B+B A
\end{aligned}
$$

$\therefore A B+B A$ is hermition

$$
\begin{aligned}
(A B-B A)^{\theta} & =(A B)^{\theta}-(B A)^{\theta} \\
& =B^{\theta} A^{\theta}-A^{\theta} B^{\theta} \\
& =B A-A B \quad\left[f_{r o m} \theta\right] \\
& =-(A B-B A)
\end{aligned}
$$

$$
(A B-B A)^{8}=-(A B-B A)
$$

Hence $A B-B A$ is skew-hermitian. matrix.

Show that every share matrix Can be expressed in one and only one Way as a sum of a hermitian and a skew - hermition matrix.

Sol. Let A is a square matrix

$$
\begin{aligned}
A & =\frac{A}{2}+\frac{A}{2} \\
& =\frac{A}{2}+\frac{A}{2}+\frac{A}{2}-\frac{A^{\theta}}{2} \\
& =\frac{1}{2}\left(A+A^{\theta}\right)+\frac{1}{2}\left(A-A^{\theta}\right) \\
A & =P+Q
\end{aligned}
$$

$$
\begin{aligned}
& P= \frac{1}{2}\left(A+A^{\theta}\right) \\
& P^{\theta}=\frac{1}{2}\left(A+A^{\theta}\right)^{\theta}=\frac{1}{2}\left(A^{\theta}+\left(A^{\theta}\right)^{\theta}\right) \\
&=\frac{1}{2}\left(A^{\theta}+A\right) \\
&=\frac{1}{2}\left(A+A^{\theta}\right) \\
&=\rho .
\end{aligned}
$$

$$
p^{\theta}=1
$$

$\Rightarrow 9$ is hermition.

$$
\begin{aligned}
Q & =\frac{1}{2}\left[A-A^{\theta}\right] \\
Q^{\theta} & =\frac{1}{2}\left[A-A^{\theta}\right]^{\theta} \\
& =\frac{1}{2}\left[A^{\theta}-\left(A^{\theta}\right)^{\theta}\right] \\
& =\frac{1}{2}\left(A^{\theta}-A\right)=-\frac{1}{2}\left(A-A^{\theta}\right)=-Q . \\
Q^{\theta} & =-Q . \quad \text { skew - hermitian matrix }
\end{aligned}
$$

$$
A=1+Q
$$

hermitian skew herinitian
$\downarrow \quad \downarrow$
Hence a share matrix can be expressed in hermitian and skew hermitian matrix.
Let $A=R+s$
where R is hermitianghd s is skew - hermitian

$$
\begin{gather*}
R^{\theta}=R \quad s^{\theta}=-s . \\
A^{\theta}=(R+S)^{\theta}=R^{\theta}+s^{\theta} \\
A^{\theta}=R-S .-(1) \\
A=R+S \tag{II}\\
\text { Add (1) \& (11) } \\
A+A^{\theta}=2 R \\
\frac{A+A^{\theta}}{2}=R=\rho
\end{gather*}
$$

subtract (1) from (1)

$$
\begin{aligned}
& A-A^{\theta}=B+S-A+S \\
& A-A^{\theta}=2 S \\
& \frac{A-A^{\theta}}{2}=S \cdot=Q .
\end{aligned}
$$

Hence $A=P+Q$ is unique
\Rightarrow Every spare matrix can be expressed in one and Only one way as a sung hermitian and skew hermitian matrix

Every share Matrix Can be expressed in one and only one way as $P+i Q$ where P and Q are hermitian Do it yoursey.
\& Show that every skew hermitian matrix.A Canbe uniquely expressed as $P-i d$ where P - real skew symmetric
Q - Real symmetric.

Proof A is skew hermitian matrix.

$$
\begin{aligned}
& \therefore A^{\theta}=-A . \\
& A=\frac{A}{2}+\frac{A}{2}+\frac{\bar{A}}{2}-\frac{\bar{A}}{2} \\
&=\frac{1}{2}(A+\bar{A})-\frac{1 \times i}{2 i}(-A+\bar{A}) \\
& A=P-i Q .
\end{aligned}
$$

where $P=\frac{1}{2}(A+\bar{A}) Q=\frac{1}{2 i}(\bar{A}-A)$

$$
\begin{aligned}
P=\frac{1}{2}(A+\bar{A}) \\
\begin{aligned}
P^{\prime}=\frac{1}{2}(A+\bar{A})^{\prime} & =\frac{1}{2}\left[A^{\prime}+(\bar{A})^{\prime}\right] \\
& =\frac{1}{2}\left[A^{\prime}+A^{\theta}\right] \\
& =\frac{1}{2}\left[\left(-A^{\theta}\right)^{\prime}+A^{\theta}\right] \\
& =\frac{1}{2}\left[-\left((\bar{A})^{\prime}\right]^{\prime}-A\right)[\text { frome } \theta] \\
& =\frac{1}{2}[-\bar{A}-A]=-\frac{1}{2}(A+\bar{A})
\end{aligned}
\end{aligned}
$$

$$
P^{\prime}=-\rho
$$

$\therefore P$ is skew symmetric matrix. - (1)

$$
\begin{aligned}
& P=\frac{1}{2}(A+\bar{A}) \\
& \bar{P}=\frac{1}{2}(\overline{A+\bar{A}})=\frac{1}{2}(\bar{A}+(\overline{\bar{A}})) \\
&=\frac{1}{2}(\bar{A}+A)=\frac{1}{2}(A+\bar{A})=P
\end{aligned}
$$

$\bar{P}=P \Rightarrow P$ is real -(III)
from (II) and (II)
P is real skew symmetric Matrix.

$$
\begin{aligned}
& Q=\frac{1}{2 i}(\bar{A}-A) \\
& \begin{aligned}
Q^{\prime}=\frac{1}{2 i}(\bar{A}-A)^{\prime} & =\frac{1}{2 i}\left[(\bar{A})^{\prime}-A^{\prime}\right] \\
& =\frac{1}{2 i}\left[A^{\theta}+\left(A^{\theta}\right)^{\prime}\right](\text { from }(0))
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{1}{2 i}\left[-A+\left[(\bar{A})^{\prime}\right]^{\prime}\right] \\
&=\frac{1}{2 i}[-A+\bar{A}]=\frac{1}{2 i}(\bar{A}-A)=Q . \\
& Q^{\prime}=Q .
\end{aligned}
$$

Hence Q is symmetric Mabix. -(10)

$$
\begin{aligned}
\left.\bar{Q}=\overline{\frac{1}{2} i}(\bar{A}-A)\right) & =\frac{-1}{2 i}(\overline{\bar{A}-A}) \\
& \left.=\frac{-1}{2 i}(\overline{\bar{A}})-\bar{A}\right)
\end{aligned}
$$

$$
\begin{align*}
& =\frac{-1}{2 i}(A-\bar{A}) \\
& =\frac{1}{2 i}(\bar{A}-A)=Q . \\
Q=Q . & \Rightarrow Q \text { is real } \tag{1}
\end{align*}
$$

from (IV) and (1).
Q is real symmetric Matrix
$\therefore A$ can be expressed in form of $P-i Q$ Where P is reed skew symmetric and

Q is real symmetric Matrix
Now we have to prove $A=\rho$-iQ is unite.
$\operatorname{Let} A=R$-is.-(4) where R is real skew

$$
\begin{align*}
\bar{A} & =\overline{R-i s} \\
& =\bar{R}+i \bar{s} \\
\bar{A} & =R+i s . \tag{iii}
\end{align*}
$$

Add (V1) and (11)

$$
\begin{gathered}
A+\bar{A}=2 R \\
\frac{A+\bar{A}}{2}=R \cdot=P
\end{gathered}
$$

subtract (11) from (V11)

$$
\frac{\bar{A}-A}{2 i}=s=Q
$$

Hence $A=R$-is is same as $A=P-i Q$. Hence represatation is cuinive

Express the Matrix $A=\left[\begin{array}{ccc}1+i & 2 i & 3 \\ 0 & 2-3 i & 3-4 i \\ 5 & -7 i & 0\end{array}\right]$
as the sum of hermitian and skew hermitian mat six.
$\stackrel{\text { Sol }}{=} A=\left[\begin{array}{ccc}1+i & 2 i & 3 \\ 0 & 2-3 i & 3-4 i \\ 5 & -7 i & 0\end{array}\right]$

$$
\begin{aligned}
& A^{\prime}=\left[\begin{array}{ccc}
1+i & 0 & 5 \\
2 i & 2-3 i & -7 i \\
3 & 3-4 i & 0
\end{array}\right] \\
& A=\left(\overline{A^{\prime}}\right)=\left[\begin{array}{ccc}
1-i & 0 & 5 \\
-2 i & 2+3 i & 7 i \\
3 & 3+4 i & 0
\end{array}\right] \\
& A+A^{\theta}=\left[\begin{array}{ccc}
1+i & 2 i & 3 \\
0 & 2-3 i & 3-4 i \\
5 & -7 i & 0
\end{array}\right]+\left[\begin{array}{ccc}
1-i & 0 & 5 \\
-2 i & 2+3 i & 7 i \\
3 & 3+4 i & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
2 & 2 i & 8 \\
-2 i & 4 & 3+3 i \\
8 & 3-3 i & 0
\end{array}\right] \\
\frac{A+A^{\theta}}{2} & =\left[\begin{array}{ccc}
1 & i & 4 \\
-i & 2 & 3 / 2+3 / 2 i \\
4 & 3 / 2-3 / 2 i & 0
\end{array}\right] \text { which is hermitian }
\end{aligned}
$$

$$
\begin{aligned}
& A-A^{\theta}=\left[\begin{array}{ccc}
1+i & 2 i & 3 \\
0 & 2-3 i & 3-4 i \\
5 & -7 i & 0
\end{array}\right]-\left[\begin{array}{ccc}
1-i & 0 & 5 \\
-2 i & 2+3 i & 7 i \\
3 & 3+4 i & 0
\end{array}\right] \\
&=\left[\begin{array}{ccc}
2 i & 2 i & -2 \\
2 i & -6 i & 3-11 i \\
2 & -3-11 i & 0
\end{array}\right] \\
& \frac{A-A}{2}=\left[\begin{array}{ccc}
i & i & -1 \\
i & -3 i & 3 / 2-11 / 2 i \\
1 & -3 / 2-11 / 2 i & 0
\end{array}\right] \begin{array}{l}
\text { Whichis skew } \\
\text { hermition } \\
\text { Matrix }
\end{array}
\end{aligned}
$$

Hence $A=\left(\frac{A+A^{\theta}}{2}\right)+\left(\frac{A-A^{\theta}}{2}\right)$

$$
=\left[\begin{array}{ccc}
1 & i & 4 \\
-i & 2 & 3 / 2+3 / 2 i \\
4 & 3 / 23 / 2 i & 0
\end{array}\right]+\left[\begin{array}{ccc}
i & i & -1 \\
i & -3 i & 3 / 2-11 / 2 i \\
1 & -3 / 2-1 / 2 i & 0
\end{array}\right]
$$

\therefore Matrix A has been expressed as the sum of hermitian and skew hermitian Matrix.

