Calculus

General Theorems: Important Questions Degrange's thm. Beauchy's Mean Value thm. Taylor's thm.

COS TIX Sint 11/2 =) log 1/2 2-1 TI |2 Sin TI]2 COJ TIX 2 [sin 11/2 =]] dim et1 log 1/x x-1 COS 17×/2 11/2 log 1/2 2-1

Using Cauchy's Mean value theorem Prove that for 271 $dim n(x^{(n-1)}) = dogx$ $n \rightarrow \infty$ $f(x) = x^{(n)} g(x) = \log x$ loog f(x) and g(x) are continous in [1,x] f(n) and g(n) are derivable in (1,n) $g'(n) \downarrow \pm 0 in(1, x)$

 $n (x^{(n-1)}) = C^{(n)} logx$ Take din n - 00 both sides. dim n (x^{ln}-1) = dog x dim c^lneas noo $n(x^{ln}-1) = dogx.$ The Pence Proved.