Calculus
General Theorems: Important Questions
Q Rolle's thm.
\& Lagrange's thm.
\& Cauchy's Mean value thm.
\& Taylor's thm.
use Cauchy's Mean value the. to evaluate $\lim _{x \rightarrow 1} \frac{\cos \pi x y_{2}}{\log y_{x}}$

Sol. $f(x)=\cos \frac{\pi x}{2} \quad g(x)=\log x$
$f(x)$ and $g(x)$ are Continuous in $[x, 1]$
$f(x)$ and $g(x)$ are derivable in $(x, 1)$ also $g^{\prime}(x)=\frac{1}{x} \neq 0$ in $(x, 1)$
$\therefore$ all Conditions of Cauchy's mean value the are satisfied.

$$
\begin{array}{ll}
\Rightarrow & \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)} \\
\Rightarrow & \begin{array}{ll}
b=1 \\
a & =x
\end{array} \\
\Rightarrow & \frac{f(1)-f(x)}{g(1)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}
\end{array} \quad \begin{aligned}
& \text { where. } \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{\cos \pi / 2-\cos \frac{\pi x}{2}}{\log 1-\log x}=\frac{-\pi / 2 \sin \frac{\pi c}{2}}{1 / c} \\
& \Rightarrow \frac{-\cos \frac{\pi x}{2}}{\log 1 / x}=\frac{\pi / 2 \sin \frac{\pi c}{2}}{1 / c}
\end{aligned}
$$

Taking Lime both side

$$
\begin{aligned}
& x<c<1 \\
& x \rightarrow 1 \\
& c \rightarrow 1
\end{aligned}
$$

$$
\begin{aligned}
& \left.\Rightarrow \lim _{x \rightarrow 1} \frac{\cos \frac{\pi x}{2}}{\log v_{x}}=\lim _{c \rightarrow 1} \frac{\pi / 2 \sin \frac{\pi c}{2}}{4 c}\right] \\
& \Rightarrow \lim _{x \rightarrow 1} \frac{\cos \pi x / 2}{\log \| x}=y / 2 \sin \pi / 2 \quad[\sin \pi / 2=1] \\
& \Rightarrow \lim _{x \rightarrow 1} \frac{\cos \pi x / 2}{\log \|_{x}}=\frac{\pi}{2} \text { Ans. }
\end{aligned}
$$

(2) Using Cauchy 's Mean value theorem Prove that for $x>1$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n\left(x^{1 / n}-1\right)=\log x \\
& f(x)=x^{1 / n} \quad g(x)=\log x
\end{aligned}
$$

$f(x)$ and $g(x)$ are Continous in $[1, x]$
$f(x)$ and $g(x)$ are derivable in $(1, x)$

$$
g^{\prime}(x)=\frac{1}{x} \neq 0 \text { in }(1, x)
$$

$\therefore$ all Conditions of Cauchy's mean
values the satisfied

$$
\begin{aligned}
& \frac{f(x)-f(1)}{g(x)-g(1)}=\frac{f^{\prime}(c)}{g^{\prime}(c)} \quad \text { where } \\
& \frac{x^{\ln }-1}{\log x-\log 1}=\frac{\frac{1}{n} c^{\frac{1}{n}-1}}{\frac{1}{c}} \\
& \frac{x^{\prime \ln }-1}{\log x}=\frac{1}{n} c^{\frac{1}{n}}
\end{aligned}
$$

$$
n\left(x^{1 / n}-1\right)=c^{1 / n} \cdot \log x
$$

Take $\sin n \rightarrow \infty$ both sides.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n\left(x^{1 / n}-1\right)=\log x \lim _{n \rightarrow \infty} c^{y / n} \\
& \lim _{n \rightarrow 1} n\left(x^{1 / n}-1\right)=\log x .
\end{aligned}
$$

Hence Proved.

