EIGEN VALUES AND CAYLEY-HAMILTON THEOREM Important Question (PYQ)
Determine the eigen values and eigen vectors of a matrix.

$$
A=\left[\begin{array}{lll}
3 & 1 & 1 \\
2 & 4 & 2 \\
1 & 1 & 3
\end{array}\right]
$$

Is it diagonalisable? Justify.

$$
\stackrel{\text { Sol. }}{=} A=\left[\begin{array}{lll}
3 & 1 & 1 \\
2 & 4 & 2 \\
1 & 1 & 3
\end{array}\right]
$$

Characteristic e\% of A.

$$
|A-\lambda I|=0
$$

$$
\left|\begin{array}{ccc}
3-\lambda & 1 & 1 \\
2 & 4-\lambda & 2 \\
1 & 1 & 3-\lambda
\end{array}\right|=0
$$

$$
\begin{aligned}
& \left|\begin{array}{ccc}
6-\lambda & 6-\lambda & 6-\lambda \\
2 & 4-\lambda & 2 \\
1 & 1 & 3-\lambda
\end{array}\right|=0 \\
& (6-\lambda)\left|\begin{array}{ccc}
R_{1}+R_{2}+R_{3} \\
1 & 1 & 1 \\
1 & 1 & 3-\lambda
\end{array}\right|=0 \\
& (6-\lambda)\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & 2-\lambda & 0 \\
0 & 0 & 2-\lambda
\end{array}\right|=0 \quad \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{array}
\end{aligned}
$$

$$
(6-\lambda)(2-\lambda)^{2}=0
$$

1. Characteristic eq.
$(6-\lambda)(2-\lambda)(2-\lambda)=0{ }_{2}^{2}$ eigen valus. $\lambda=2,2,6$.
2. spect rum of matrox.
\therefore eigen values are $2,2,6$ eige valuss
det x is the eigen vector of A.

$$
(A-\lambda I) X=0
$$

Now for $\lambda=6$ eigen velor is

$$
\begin{gathered}
(A-6 I) x=0 \quad A=\left[\begin{array}{lll}
3 & 1 & 1 \\
2 & 4 & 2 \\
1 & 1 & 3
\end{array}\right] \\
\left.\left[\begin{array}{ccc}
-3 & 1 & 1 \\
2 & -2 & 2 \\
1 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \begin{array}{ccc}
C_{1} \leftrightarrow C_{3} \\
2 & -2 & 2 \\
-3 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}+3 R_{1}
\end{gathered}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 1 & -3 \\
0 & -4 & 8 \\
0 & 4 & -8
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & 1 & -3 \\
0 & -4 & 8 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

\therefore Rank of Corf matrix is 2 .
\therefore el. have only $3-2=1$ L.I. solution.

$$
\begin{aligned}
& \begin{array}{l}
x+y-3 z=0 \\
-4 y+8 z=0 \\
-4 y+8 k=0 \\
-4 y=-8 k \\
y=2 k
\end{array} \quad \frac{z=k .}{\left.\frac{x}{\mid-4}-\frac{1}{8} \right\rvert\,}=\frac{-y}{|1-3|}=\frac{x}{4}=\frac{-y}{8}=\frac{3}{4 .} \\
& x+2 k-3 k=0 \\
& x=k . \\
& \therefore \text { eigen vector is }\left[\begin{array}{c}
k \\
2 k \\
k
\end{array}\right] \Rightarrow\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] .
\end{aligned}
$$

eigen vector for $\lambda=2$.

$$
\begin{aligned}
& \text { ligan vector for } \lambda=2 \\
& (A-\lambda I) x=0 \quad A=\left[\begin{array}{lll}
3 & 1 & 1 \\
2 & 4 & 2 \\
1 & 1 & 3
\end{array}\right] \\
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
R_{3} \rightarrow R_{2}-2 R_{1} \\
0
\end{array}\right.}
\end{aligned}
$$

Now Coff matrix is of Rank 1 .
\therefore eq. have $3-1=2$ solutions

$$
\begin{array}{rlrl}
x_{1}+y_{1}+z_{1} & =0 . & y_{1}=0 \quad z_{1} & =k \\
y_{1}=k \quad z_{1}=0 & x_{1}+0+k=0 \\
x_{1}+k+0 & =0 & x_{1} & =-k \\
x_{1} & =-k\left[\begin{array}{c}
-k \\
k \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] & {\left[\begin{array}{c}
-k \\
0 \\
k
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]}
\end{array}
$$

\therefore eigen vectors for $\lambda=2$ are

$$
\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Yes this is diagonalisable invertible Matrix.

$$
P=\left[\begin{array}{ccc}
1 & -1 & -1 \\
2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

$\otimes \rho$ Now find $P^{-1} A P$
Diagonalise the Matrix. A

$$
\begin{aligned}
|P| & =1(1)+1(2)-1(-1) \left\lvert\,\left[\begin{array}{ccc}
1 & -1 & -1 \\
2 & 0 & -1 \\
1 & 0 & 0 \\
0
\end{array}\right]\right. \\
& =1+2+1=4 . \left\lvert\, \begin{array}{ccc}
1 & 1 & 1 \\
-2 & 2 & -2 \\
-1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 1 & -1 \\
2 & 1 & 0 \\
1 & 0 & -1 \\
\hline & 1
\end{array}\right. \\
P^{-1} & =\frac{\operatorname{adj} P}{|P|}=\frac{1}{4}\left[\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 2 & -2 \\
-1 & -1 & 3
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& P^{-1} A P=\frac{1}{4}\left[\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 2 & -2 \\
-1 & -1 & 3
\end{array}\right]\left[\begin{array}{lll}
3 & 1 & 1 \\
2 & 4 & 2 \\
1 & 1 & 3
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & -1 \\
2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \\
& =\frac{1}{4}\left[\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 2 & -2 \\
-1 & -1 & 3
\end{array}\right]\left[\begin{array}{ccc}
6 & -2 & -2 \\
12 & 2 & 0 \\
6 & 0 & 2
\end{array}\right] \\
& =\frac{1}{4}\left[\begin{array}{ccc}
24 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 8
\end{array}\right]=\left[\begin{array}{ccc}
6 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
\end{aligned}
$$

