Plane Geometry
Circle
Important questions (PYQ)
Find the equation of the circle passing through the point $(2,4)$ and which

- has its centre at intersection of

$$
2 x+3 y=-7
$$

Sol

$$
\left.\begin{array}{c}
x-y=4 \\
2 x+3 y=-7
\end{array}\right] \times 2 \times 1
$$

$$
\begin{gathered}
2 x-2 y=8 \\
-2 d x+3 y=-7 \\
\hline-5 y=15 \\
y=-3 . \\
\text { Out } y=-3 \text { in } x-y=4 \\
x+3=4 \\
x=0
\end{gathered}
$$

Point of intersection of lines is $(1,-3)$
\therefore Centre of Circe $(1,-3)$
Now Radius of Circle is

$$
\begin{aligned}
& \sqrt{(2-1)^{2}+\left(4-(-3)^{2}\right.} \\
= & \sqrt{1+49}=\sqrt{50}
\end{aligned}
$$

er. of Circle is
$(x-h)^{2}+(y-k)^{2}=r^{2} \quad$ where r is Radius

$$
(x-1)^{2}+(y+3)^{2}=(\sqrt{50})^{2}
$$ of circe

$$
\begin{aligned}
x^{2}+1-2 x+y^{2}+9+6 y & =50 \\
x^{2}+y^{2}-2 x+6 y-40 & =0 .
\end{aligned}
$$

which is required el.
(2) Find the el. of Circle which passes through the point $(2,0)$ and touches the straight line $x+2 y-1=0$ at the point $(3,-1)$

Sol Let er. of Crick e is

$$
x^{2}+y^{2}+2 g x+2 f y+c=0-0
$$

$$
\begin{array}{r}
4+4 g+c=0 \\
4 g+c=-4 \tag{1}
\end{array}
$$

el. (1) also passes through $(3,-1)$

$$
\begin{array}{r}
9+1+6 g-2 f+c=0 \\
6 g-2 f+c=-10 \tag{111}
\end{array}
$$

Subtrace (11) from (1)

$$
\begin{gather*}
4 g+c-6 g+2 f-c=-4+10 \\
-2 g+2 f=6 \\
2 g-2 f+6=0 \\
g-f+3=0 \tag{11}
\end{gather*}
$$

Centre of Circh is $\left(-g_{1}-f\right)$
slope of $C P\left(m_{1}\right)=\frac{-1+f}{3+g}$

Now slope of $x+2 y-1=0$ is

$$
m_{2}=-1 / 2 .
$$

Also line of and liven line $x+2 y-1=0$ are 1 to each other

$$
\begin{aligned}
& \therefore m_{1} m_{2}=-1 \\
& \left(\frac{-1+f}{3+g}\right)\left(\frac{-1}{2}\right)=-1
\end{aligned}
$$

$$
\begin{gather*}
\frac{-1+f}{3+g}=2 \\
-1+f=6+2 g \\
2 g-f+7=0 \\
\frac{-9-f+3=0}{g+4=0} \\
g=-4 .
\end{gather*}
$$

Put $g=-4$ in (11)

$$
\begin{gathered}
-4-f+3=0 \\
-f-1=0 \\
f=-1
\end{gathered}
$$

Put value of $g=-4$ in (11)

$$
\begin{aligned}
4 g+c & =-4 \\
4(-4)+c & =-4 \\
-16+c & =-4 \\
c & =-4+16
\end{aligned}
$$

$$
\begin{aligned}
c & =12
\end{aligned}
$$

Put value of g, f, c in (1)

$$
x^{2}+y^{2}-8 x-2 y+12=0
$$

which is the required el.
(3) Find the equation of the circle which passes through the points $(4,1)$ and $(6,5)$ and has is Centre on the lime

$$
4 x+y=16
$$

Sol Let eq of circle is

$$
x^{2}+y^{2}+2 g x+2 f y+c=0-0
$$

(1) passes through (4,1) (Give)

$$
16+1+8 g+2 f+c=0
$$

$$
\begin{equation*}
8 g+2 f+c+17=0 \tag{1}
\end{equation*}
$$

Also (1) Passes through $(6,5)$

$$
\begin{array}{r}
36+25+12 g+10 f+c=0 \\
12 g+10 f+c+61=0 \tag{111}
\end{array}
$$

Subtrace (11) from (11)

$$
\begin{gather*}
12 g+10 f+\ell+61-8 g-2 f-\not-17=0 \\
4 g+8 f+44=0 \\
g+2 f+11=0 \tag{10}
\end{gather*}
$$

Now $(-g,-f)$ is centre of circe. $(-g,-f)$ lies on the lines

$$
\begin{gather*}
4 x+y=16 \quad \text { [Given] } \\
-4 g-f=16 \\
4 g+f+16=0-(1) \tag{1}\\
g+2 f+11=0] \times 4 \\
4 g+f+16=0 \\
4 g+8 f+44=0 \\
-4 g+f+16=0
\end{gather*}
$$

$$
\begin{aligned}
& 7 f+28=0 \\
& f=\frac{-28}{7}=-4 .
\end{aligned}
$$

Put value of f in (11)

$$
\begin{gathered}
g+2 f+11=0 \\
g-8+11=0 \\
g=-3 .
\end{gathered}
$$

Put value of g and f in (11)

$$
c=15
$$

Now put values of $g_{1} f_{1} c$ in (1)

$$
x^{2}+y^{2}-6 x-8 y+15=0 .
$$

which is the reluired eleation

