Plane Geometry Circle

Find the radical axis and length of Common chord of the Circles

$$
\begin{align*}
& x^{2}+y^{2}+a x+b y+c=0 \tag{1}\\
& x^{2}+y^{2}+b x+a y+c=0 \tag{11}
\end{align*}
$$

subtract (II) from (1)

$$
\begin{gathered}
y^{2}+y^{2}+a x+b y+\not \subset-x^{2}-y^{2}-b x-a y-f=0 \\
a x+b y-b x-a y=0 \\
(a-b) x+(b-a) y=0
\end{gathered}
$$

$$
\begin{gathered}
(a-b)(x-y)=0 \\
x-y=0
\end{gathered}
$$

Which is required redical axis Centre of circe s (1)

$$
\left(\frac{-a}{2}, \frac{-b}{2}\right)
$$

Radius of (1) $\sqrt{g^{2}+f^{2}-c}$

$$
r=\sqrt{\frac{a^{2}}{4}+\frac{b^{2}}{4}-c}=\frac{\sqrt{a^{2}+b^{2}-4 c}}{2}
$$

CM is \perp to line $x-y=0$
where $c\left(\frac{-a}{2}, \frac{-b}{2}\right)$

$$
\begin{aligned}
\therefore \quad C M & =\frac{\left|-\frac{a}{2}+\frac{b}{2}\right|}{\sqrt{1+1}} \\
& C M
\end{aligned} \begin{aligned}
& =\frac{|a-b|}{2 \sqrt{2}}
\end{aligned}
$$

Also $A B=2 A M$
(\because CM bisects the (hora $A B$)
$\triangle C A M$ is right angled \triangle.

$$
\begin{aligned}
\therefore(C A)^{2} & =(C M)^{2}+(A M)^{2} \quad[B y \text { Pythagoras] }] \\
\therefore(A M)^{2} & =(C A)^{2}-(C M)^{2} \\
& =\frac{a^{2}+b^{2}-4 c}{4}-\frac{(a-b)^{2}}{8} \\
& =\frac{2 a^{2}+2 b^{2}-8 c-a^{2}-b^{2}+2 a b}{8} \\
(A M)^{2} & =\frac{a^{2}+b^{2}-8 c+2 a b}{8}
\end{aligned}
$$

$$
\begin{aligned}
(A M)^{2} & =\frac{(a+b)^{2}-8 c}{8} \\
A M & =\sqrt{\frac{(a+b)^{2}-8 c}{8}} \\
& =\frac{1}{2} \sqrt{\frac{(a+b)^{2}-8 c}{2}}
\end{aligned}
$$

Now length of chord $A B=2 A M$.

$$
\therefore A B=\frac{\sqrt{(a+b)^{2}-8 c}}{2}
$$

(2) Prove that two circles

$$
\begin{align*}
& x^{2}+y^{2}+2 a x+c=0 \tag{1}\\
& x^{2}+y^{2}+2 b y+c=0 \tag{11}
\end{align*}
$$

touch if $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c}$
Sol. subtract (11) from (1)

$$
a x-b y=0
$$

which is redical axis of circles

Cirle (1) and (11) touch each other if $C M=$ Radius of (1)
Centre of (1)

$$
c(-a, 0)
$$

Also Radivs of (1) $\sqrt{g^{2}+f^{2}-c}$

$$
\begin{aligned}
& \sqrt{a^{2}+0-c} \\
& \sqrt{a^{2}-c}
\end{aligned}
$$

$$
\begin{aligned}
& C M=\sqrt{a^{2}-c} \quad \begin{array}{c}
\text { Whore } C M \text { is } 1 \text { distance } \\
\text { from } c \text { to Redical } \\
\text { axis. }
\end{array} \\
& \frac{|a(-a)-b(0)|}{\sqrt{a^{2}+b^{2}}}=\sqrt{a^{2}-c} \quad \begin{array}{l}
1-a^{2} \mid \\
\frac{a^{2}+b^{2}}{a^{2}-c}
\end{array}
\end{aligned}
$$

\&. both side.

$$
\frac{a^{4}}{a^{2}+b^{2}}=a^{2}-c
$$

$$
\begin{aligned}
& a^{4}=a^{4}-a^{2} c+a^{2} b^{2}-b^{2} c \\
& \left(a^{2}+b^{2}\right) c=a^{2} b^{2} \\
& \frac{a^{2}+b^{2}}{a^{2} b^{2}}=\frac{1}{c} \log \\
& \frac{a^{2}}{a^{2} b^{2}}+\frac{b^{2}}{a^{2} b^{2}}=\frac{1}{c} \\
& \frac{1}{b^{2}}+\frac{1}{a^{2}}=\frac{1}{c} \\
& \text { Hence Proved. }
\end{aligned}
$$

(3) Find the equation of the Circle which passes through the points $(2,0) \&(0,2)$ and is orthogonal to circle

$$
2 x^{2}+2 y^{2}+5 x-6 y+4=0
$$

Sol duet eq. of circle is

$$
x^{2}+y^{2}+2 g x+2 f y+c=0-1
$$

It Passes through $(2,0)$

$$
4+0+4 g+0+c=0
$$

$$
4 g+c=-4-\mathbb{1}
$$

Aloo (1) Passes through $(0,2)$

$$
\begin{gather*}
0+4+0+4 f+c=0 \\
4 f+c=-4 \tag{111}
\end{gather*}
$$

subtract (III) from (11)

$$
\begin{align*}
4 g+\psi-4 f-y & =-4+4 \\
4 g-4 f & =0 \\
4 g & =4 f \\
g & =f . \tag{10}
\end{align*}
$$

$2 x^{2}+2 y^{2}+5 x-6 y+4=0$ is 0rthogonal to $x^{2}+y^{2}+2 g x+2 f y+c=0$

$$
\begin{gathered}
x^{2}+y^{2}+\frac{5}{2} x-\frac{6}{2} y+2=0 \\
2 g(5 / 4)+2 f\left(\frac{-6}{4}\right)=c+2 \\
5 g-6 f=2 c+4 \\
5 g-6 f=2(-4-4 f)+4 \quad \text { [from(iii)] } \\
5 g-6 f=-8-8 f+4 \\
5 g-6 f+8 f+4=0
\end{gathered}
$$

$$
\begin{aligned}
& 5 g+2 f+4=0 \\
& 5 f+2 f+4=0 \quad \text { [from (10)] } \\
& 7 f+4=0 \\
& f=-417 . \\
& g=-4 / 7.0 g i c a l
\end{aligned}
$$

from (II)

$$
\begin{aligned}
c & =-4-4\left(\frac{-4}{7}\right) \\
& =-4+\frac{16}{7} \\
& =\frac{-28+16}{7}=\frac{-12}{7}
\end{aligned}
$$

Put $f_{1} g f c$ in (1)

$$
\begin{aligned}
& x^{2}+y^{2}+2\left(\frac{-4}{7}\right) x+2\left(\frac{-4}{7}\right) y+\left(\frac{-12}{7}\right)=0 \\
& 7 x^{2}+7 y^{2}-8 x-8 y-12=0
\end{aligned}
$$

Which is rewired el.
Find the el. of circle which passes through $(3,0)$ touches the y-axis and cuts Orthogonally the circle

$$
x^{2}+y^{2}-6 x+4 y-3=0
$$

