Plane Geometry Circle
Important questions (PYQ)
Two circle each of radius 5 units. touch each other at point $(1,2)$ If the equation of their Common tangent is $4 x+3 y=10$. Find the equation of Circles.

Sol. Two circle Touch
each other at $P(1,2)$ also

Common tangut $4 x+3 y=10$
Slope of $T^{\left(m_{1}\right)}=\frac{-4}{3}$
Let c_{1} is $\left(x_{1}, y_{1}\right)\left(c_{1}\right.$ is centre of circle)
slope of $c_{1} \rho\left(m_{2}\right)=\frac{y_{1}-2}{x_{1}-1}$

Line $C, \& \& T$ are 1 to each other

$$
\begin{gather*}
\therefore \quad m_{1} m_{2}=-1 \\
\left(\frac{y_{1}-2}{x_{1}-1}\right)\left(\frac{-4}{3}\right)=-1 \\
4 y_{1}-8=3 x_{1}-3 \\
3 x_{1}-4 y_{1}=-8+3 \\
3 x_{1}-4 y_{1}=-5 \\
3 x_{1}-4 y_{1}+5=0 \tag{111}
\end{gather*}
$$

$C_{1} P$ is \perp distance from C to line T

$$
\begin{aligned}
& c_{1} \rho=\frac{\left|4 x_{1}+3 y_{1}-10\right|}{\sqrt{16+9}}=5 \\
& \frac{4 x_{1}+3 y_{1}-10}{5}= \pm 5
\end{aligned}
$$

either

$$
\begin{align*}
& \text { her } \quad 4 x_{1}+3 y_{1}-10=25 \\
& \quad 4 x_{1}+3 y_{1}-35=0 \tag{10}\\
& \text { or } 4 x_{1}+3 y_{1}-10=-25
\end{align*}
$$

$$
\begin{equation*}
4 x_{1}+3 y_{1}+15=0 \tag{1}
\end{equation*}
$$

Solve (11) and (1)

$$
\begin{aligned}
& \left.3 x_{1}-4 y_{1}+5=0\right]_{x_{3}}^{x^{4}} \\
& 4 x_{1}+3 y_{1}-35=0 \\
& 12 x-16 y_{1}+20=0 \\
& \frac{-12 / 4 \pm+9 y_{1}-105=0}{-25 y_{1}+125=0} \\
& y_{1}=\frac{125}{25}=5
\end{aligned}
$$

Put $y_{1}=5$ in (11) $x_{1}=5$
\therefore Centre G of Circle is $(5,5) \quad$ Radius $=5$ (liven)
eq. of Circle is

$$
\begin{aligned}
& (x-5)^{2}+(y-5)^{2}=25 \\
& x^{2}+25-10 x+y^{2}+25-10 y=25 \\
& x^{2}+y^{2}-10 x-10 y+25=0
\end{aligned}
$$

Solve (iii) and (1)

$$
\left.\begin{array}{rl}
3 x_{1}-4 y_{1}+5 & =0 \\
4 x_{1}+3 y_{1}+15 & =0
\end{array}\right] \times 4
$$

Put

$$
\begin{aligned}
& y_{1}=-1 \text { in (III) } \\
& x_{1}=-3 .
\end{aligned}
$$

C_{2} Centre of other Circle is $(-3,-1) \quad$ radius $=5$ (liven)

$$
\begin{aligned}
& (x+3)^{2}+(y+1)^{2}=25 \\
& x^{2}+9+6 x+y^{2}+1+2 y=26 \\
& x^{2}+y^{2}+6 x+2 y+10-25=0 \\
& x^{2}+y^{2}+6 x+2 y-15=0
\end{aligned}
$$

(2) Find the locus of the point of intersection of two perpendicular longest to circle.
sol. Let eq of circe

$$
x^{2}+y^{2}=a^{2}
$$

Now Let point of intersection

of tangents is $P(x, y)$
el. of tangent to the circle.

$$
y=m x+a \sqrt{1+m^{2}}
$$

It passes through $\left(x_{1}, y_{1}\right)$

$$
\begin{aligned}
& y_{1}=m x_{1}+a \sqrt{1+m^{2}} \\
& y_{1}-m x_{1}=a \sqrt{1+m^{2}}
\end{aligned}
$$

s?. both side.

$$
\left(y_{1}-m x_{1}\right)^{2}=a^{2}\left(1+m^{2}\right)
$$

$$
\begin{align*}
& y_{1}^{2}+m^{2} x_{1}^{2}-2 m x_{1} y_{1}=a^{2}\left(1+m^{2}\right) \\
& y_{1}^{2}+m^{2} x_{1}^{2}-2 m x_{1} y_{1}-a^{2}-a^{2} m^{2}=0 \\
& m^{2}\left(x_{1}^{2}-a^{2}\right)-2 m x_{1} y_{1}+y_{1}^{2}-a^{2}=0-1
\end{align*}
$$

which is quad in m.
Let m_{1}, m_{2} be the roots of el.(1) Tangents are 1 to each other (liven)

$$
\therefore \quad m_{1} m_{2}=-1
$$

from (1)

$$
\begin{aligned}
& m_{1} m_{2}=\frac{y_{1}^{2}-a^{2}}{x_{1}^{2}-a^{2}}=-1 \\
& y_{1}^{2}-a^{2}=-x_{1}^{2}+a^{2} \\
& y_{1}^{2}+x_{1}^{2}=2 a^{2}
\end{aligned}
$$

\therefore Locus of $\left(x_{1}, y_{\nu}\right)$ is $x^{2}+y^{2}=2 a^{2}$ which is eq of circle.
(3) The line $2 x-y=4$ meets the circle $x^{2}+y^{2}-6 x+2 y+2=0$ at the points P and Q. If the tangents of P and Q meet at R. find the Coordinates

Sol. of R.
$x^{2}+y^{2}-6 x+2 y+2=0$ is

el. of Given circle

Compare with $x^{2}+y^{2}+2 g x+2 f y+c=0$

$$
\begin{array}{rl}
2 g=-6 & 2 f \\
g=-3 & f=1
\end{array}
$$

$P Q$ is Chord of Contact where $R\left(x_{1}, y_{7}\right)$

$$
\begin{align*}
& x x_{1}+y y_{1}+g\left(x+x_{1}\right)+f\left(y+y_{1}\right)+c=0 \\
& x x_{1}+y y_{1}-3 x-3 x_{1}+y+y_{1}+2=0 \\
& \left(x_{1}-3\right) x+\left(y_{1}+1\right) y-3 x_{1}+y_{1}+2=0-\varnothing \tag{1}
\end{align*}
$$

Also po is $2 x-y=4$ (Given)
\therefore (1) and (11) represent bare line.

$$
\begin{align*}
& \frac{2}{x_{1}-3}=\frac{-1}{y_{1}+1}=\frac{4}{3 x_{1}-y_{1}-2} \\
& 2 y_{1}+2=-x_{1}+3 \\
& x_{1}+2 y_{1}-1=0-\text { (II) } \tag{11}\\
& -3 x_{1}+y_{1}+2=4 y_{1}+4 \\
& -3 x_{1}-3 y_{1}-2=0 \\
& 3 x_{1}+3 y_{3}+2=0 \tag{IV}
\end{align*}
$$

Solve (iii) 4 (1)

$$
\begin{array}{r}
x_{1}+2 y_{1}-1=07 \times 3 \\
\left.3 x_{1}+3 y_{1}+2=0\right]
\end{array} x_{1}^{3}
$$

Put y_{1} in (III)

$$
\begin{aligned}
& x_{1}=-1 / 3 . \\
\therefore & R\left(x_{1}, y_{1}\right)=(-7 / 3,5 / 3)
\end{aligned}
$$

