Plane Geometry Circle
Full Chapter Revision
\$ Central form of el. of Circle.
Centre C (h, k)
4 Radius or the

- el. is circle is $(x-n)^{2}+(y-k)^{2}=r^{2}$
standard form of el. of Circe Centre $(0,0)$ Radius r
el of Circle is

$$
x^{2}+y^{2}=r^{2}
$$

General form of eq of circe is

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

Centre $(-g,-f)$
Radius $\sqrt{g^{2}+f^{2}-c}$

* Diameter form of el. of Cinch

$$
\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)=0\left(x_{1}, y_{1}\right)
$$

Where $\left(x_{1}, y_{1}\right) \&\left(x_{2}, y_{2}\right)$ are end points of diameter of circle?

- Intercept form of Circe
el. of Circle Passing through origin and making intorcep a and b on axis is

$$
x^{2}+y^{2}-a x-b y=0
$$

- Parametric eq. of Circle

$$
\left.\begin{array}{l}
x=h+r \cos \theta \\
y=k+r \sin \theta
\end{array}\right] \begin{aligned}
& \text { are paramedic } \\
& \text { el. of } \\
& (x-h)^{2}+(y-k)^{2}=r^{2}
\end{aligned}
$$

\& Eq. of Circle passing through intersection of Circles
$S=x^{2}+y^{2}+2 g x+2 f y+c=0 \quad$-(1)
$S^{\prime}=x^{2}+y^{2}+2 g^{\prime} x+2 f^{\prime} y+c=0$-(1)
is $\quad s+k s^{\prime}=0 \quad k \neq-1$
If $k=-1 \quad s-s^{\prime}=0$

$$
2\left(g-g^{\prime}\right) x+2\left(f-f^{\prime}\right) y+c_{1}-c_{2}=0
$$

which is the straight line passing through point of intersection of circles (1) 4 (2)
ie. Common chord of circles.

\$ eq of Circle passing through intersection of Circle

$$
S=x^{2}+y^{2}+2 g x+2 f y+c=0
$$

and a line $L=l x+m y+n=0$ is

$$
S+K L=0
$$

Q el. of any circle through the intersection of circle $s=0 \&$

$$
s^{\prime}=0 \text { is }
$$

$$
S+k\left(S-S^{\prime}\right)=0
$$

8 el. of Tangent to Circle at $\left(x_{1}, y_{1}\right)$

$$
S_{1}=x x_{1}+y y_{1}+g\left(x+x_{1}\right)+f\left(y+y_{1}\right)+c=0
$$

es of Normal at $\left(x_{1}, y_{1}\right)$ of Circe

$$
\begin{aligned}
& x^{2}+y^{2}=a^{2} \\
& x y_{1}-x_{1} y=0
\end{aligned}
$$

Condition of Tangency
line $l x+m y+n=0$ is tangents to $x^{2}+y^{2}=a^{2}$ if

$$
a^{2}\left(l^{2}+m^{2}\right)=n^{2}
$$

Point of Contact $\left(\frac{-a^{2} l}{n}, \frac{-a^{2} m}{n}\right)$

Line $y=m x+c$ is tangent ta Circle $x^{2}+y^{2}=a^{2}$ if

$$
c^{2}=a^{2}\left(1+m^{2}\right)
$$

Point of Contact $\left(\pm \frac{a m}{\sqrt{1+m^{2}}}=\frac{a}{\sqrt{1+m^{2}}}\right)$

Chord of Contact
eq. of Chord of Contact of tangents drawn from $\left(x, y, y_{1}\right)$ is

$$
\begin{aligned}
& x x_{1}+y y_{1}+g\left(x+x_{1}\right)+f\left(y+y_{1}\right)+c=0 \\
& \text { same as } \\
& \text { eq. of Polar of }\left(x_{1}, y_{1}\right) \text { is Tangent. }
\end{aligned}
$$

$$
x x_{1}+y y_{1}+g\left(x+x_{1}\right)+f\left(y+y_{1}\right)+c=0
$$

(1) Pole of line $l x+m y+n=0$ w.r.t.

$$
\frac{x^{2}+y^{2}=a^{2}}{\left(-\frac{a^{2} l}{n},-\frac{a^{2} m}{n}\right)}
$$

Orthogonal Circles:- Two Circles are said to intersect Orthogonally if angle between them is right angle.

* Angle of intersection of two Circles.

$$
\operatorname{Cos} \theta=\frac{r^{2}+r_{2}^{2}-d^{2}}{2 r_{1} r_{2}}
$$

r_{1}, r_{2} are radii of Circles 4 d is distance between Centres

* Condition of Orthogonality.
r_{1}, r_{2} are radii of lives
d is distance between centres.

$$
r_{1}^{2}+r r_{2}^{2}=d^{2}
$$

Condition of Orthogonality of Circles.

$$
\begin{aligned}
& x^{2}+y^{2}+2 g_{1} x+2 f_{1} y+c_{1}=0 \\
& x^{2}+y^{2}+2 g_{2} x+2 f_{2} y+c_{2}=0 \text { is } \\
& 2 g_{1} g_{2}+2 f_{1} f_{2}=c_{1}+c_{2}
\end{aligned}
$$

Length of tangent from exterior point $P(x, y)$ is

$$
\sqrt{x_{1}^{2}+y_{1}^{2}+2 g x_{1}+2 f y_{1}}+c
$$

