EIGEN VALUES AND CAYLEY-HAMILTON THEOREM Important Question (PYQ)
Prove that characteristic roots of a hermitian matrix are real
[characters latent roots| spectral values].
Proof Ll A is hermitian matrix

$$
A^{\theta}=A \text { - (1) }
$$

Let λ be the eigen value of A
\therefore I a non zero Column matrix $n \times 1$ sit.

$$
\begin{aligned}
& A x=\lambda x-(2) \\
& x^{\theta}(A X)=x^{\theta}(\lambda x) \\
& x^{\theta} A x=\lambda\left(x^{\theta} x\right) \\
& \left(x^{\theta} A x\right)^{\theta}=\left(\lambda\left(x^{\theta} x\right)\right)^{\theta}
\end{aligned}
$$

$$
\begin{aligned}
& x^{\theta} A^{\theta}\left(x^{\theta}\right)^{\theta}=\bar{\lambda}\left(x^{\theta}\left(x^{\theta}\right)^{\theta}\right) \\
& x^{\theta} A x=\bar{\lambda}\left(x^{\theta} x\right) \quad[\text { from (1)] } \\
& x^{\theta} \lambda x=\bar{\lambda}\left(x^{\theta} x\right) \quad \text { [from (2)] } \\
& \lambda\left(x^{\theta} x\right)-\bar{\lambda}\left(x^{\theta} x\right)=0 \\
& (\lambda-\bar{\lambda})\left(x^{\theta} x\right)=0 \quad\left[x^{\theta} \neq 0 \quad x \neq 0\right] \\
& \lambda-\bar{\lambda}=0 \quad \lambda=\bar{\lambda} \Rightarrow \lambda \text { is real Henca froved. }
\end{aligned}
$$

