Calculus
L'Hospital Rule
Prove that

$$
\lim _{x \rightarrow 1} \frac{x^{x}-x}{x-1-\log x}=2
$$

Sol

$$
\frac{1^{1}-1}{1-1-\log _{1}}=\frac{0}{0} \text { form }
$$

By. L' Hospital Rule

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{f^{\prime}(x)}{g^{\prime}(x)} \\
& y=x^{x} \\
& \log y=x \log x \\
& =\lim _{x \rightarrow 1} \frac{x^{x}(1+\log x)-1}{1-\frac{1}{x}} \\
& \left.=\lim _{x \rightarrow 1} \frac{x^{x} \cdot \frac{1}{x}+(1+\log x) x^{x}(1+\log x)}{1 / x^{2}} \right\rvert\, \\
& \frac{1}{y} \frac{d y}{d x}=x \frac{1}{x}+\log x \\
& \frac{1}{y} \frac{d y}{d x}=1+\log x \\
& \frac{d y}{d x}=y(1+\log x) \\
& =x^{x}(1+\log x)
\end{aligned}
$$

$$
\begin{gathered}
=\frac{1^{\prime} \cdot 1+\left(1+\log _{1}\right) \gamma\left(1+\log _{1}\right)}{\frac{1}{1}} \left\lvert\, \begin{array}{l}
y^{\prime}=x^{x}(1+\log x) \\
\frac{d y^{\prime}}{d x^{\prime}}=x^{x}\left(\frac{1}{x}\right)+(1+\log x) \\
x^{x}(1+\log x)
\end{array}\right. \\
\begin{array}{c}
\text { L.4.S }=\text { R R H.S } \\
\text { Henem froved }
\end{array} \\
\text { dunt }
\end{gathered}
$$

