Density Theorem : Proof
Between any two diblinct real numbers there is always a rational number.
(or)

-

$$
\begin{array}{cl}
x, y \in \mathbb{R} & x<y \exists r \in Q \\
\text { sit } & x<r<y
\end{array}
$$

Proof
x, y are twa distinct real No.

$$
\text { sit } \quad x<y \quad \& \quad x>0
$$

$$
\begin{aligned}
& \text { from 2. } \\
& m+1 \leqslant n x+1<n y \quad \text { (from(1)) } \\
& m+1<n y-\text { - } 2 \text { logical } \\
& n x<m+1 \quad-\text { (4) } \quad \text { (from(2)) }
\end{aligned}
$$

from (3) and (4)

$$
\begin{aligned}
n x & <m+1 \\
x<\frac{m+1}{n} & <y
\end{aligned}
$$

Now $\frac{m+1}{n}$ is a rational no. b/w $x \& y$. Hence Between any twa distinct real numbers \exists a rational No. Hence Proved

