CALCULUS
State and Prove Cauchy's Mean Value Theorem Statement: f and g are two functions
(i) f and g are Continous in $[a, b]$
(ii) Both are differentiable in (a, b)
(iii) $g^{\prime}(x) \neq 0$ for any $x \in(a, b)$ then \exists at least one real no $c \in(a, b)$
s.t. $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}$

Proot
Lut $g(b)=g(a)$
g is Continous in $[a, b]$
is differentiable in $[a, b)$ Given.
\therefore By Rolle's thm.

$$
g^{\prime}(c)=0 \quad c \in(a, b)
$$

But $g^{\prime}(x) \neq 0 \quad x \in(a, b)$ \{livan\} which is contradiction.
Hence $g(a) \neq g(b)$
$\Rightarrow \frac{f(b)-f(a)}{g(b)-g(a)}$ is meaningful.
Now Let's Consider a function

$$
d(x)=f(x)+A g(x)
$$

Where A is Constant to determine

$$
\begin{gather*}
Q(a)=\phi(b) \\
f(a)+A g(a)=f(b)+A g(b) \\
A\{g(a)-g(b)\}=f(b)-f(a) \\
-A(g(b)-g(a))=f(b)-f(a) \\
-A=\frac{f(b)-f(a)}{g(b)-g(a)} \tag{2}
\end{gather*}
$$

f is Continous in $[a, b]$
g is Continous in $[a, b]$ Given]
sum of Continous functions is Continous
So from (1)
$Q(x)$ in Continous in $[a, b]$
also f and g are differentiable in (a,b)
-(3) (Given)
$\therefore \quad d(x)$ is differentiable in (a, b)-(4) (sum of differomint
-(4) from(0)

$$
\phi(a)=Q(b)-(5
$$

from (3), (4) and (5)
By Rolle's thm.
$\phi^{\prime}(c)=0$-(b) where $c \in(a, b)$

$$
\begin{gather*}
\phi^{\prime}(x)=f(x)+A g(x) \\
\phi^{\prime}(x)=f^{\prime}(x)+A g^{\prime}(x)-\text { (7) } \tag{7}\\
f^{\prime}(c)+A g^{\prime}(c)=0 \quad(f r o m(0)+(7)) \\
f^{\prime}(c)=-A g^{\prime}(c) \\
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)} \quad(f r o m(2) \\
\text { Hence Proved. }
\end{gather*}
$$

Hence Proved.

