Continuity and Compactness Maximum and Minimum Value Hm. f: x -> R is Continous and X is compact then f attains its Bounds Inx. • X froof f: X -> R is continous X is Compact Continous image of Compact set is Compact. =) f(x) is Compact. =) f(x) is closed and Bounded intR. By Order Completeness property.

Inf
$$(f(x))$$
 $\int exists in R.$
Let $l = \inf(f(x))$
 $l = \sup(f(x))$
 $l, u \in \overline{f(x)}$
 $l, u \in \overline{f(x)}$
 $l, u \in f(x)$ $\int \cdots \overline{f(x)} = f(x)$ as $f(x)$ is closed
 $l = f(x)$ $u = f(y)$
for $x, y \in x$
 $= \int attains$ its Bounds in x .