Continuity of a function
Let X and Y are metric spaces $f: x \rightarrow y$ is continous if

$$
f(\bar{A}) \subseteq \overline{f(A)} \forall A \subseteq X .
$$

Proof

$f: x \rightarrow y$ is continuous. $\overline{f(A)}$ is closed setiny
$f: x \rightarrow 4$ is Continous iff $f^{-1}(c)$ is closedset inx for closed set ciny.

$$
\begin{align*}
& \Rightarrow f^{-1}(\overline{f(A)}) \text { is closed inX. } \\
& \Rightarrow \overline{f^{-1}(\overline{f(A)})}=f^{-1}(\overline{f(A)}) \tag{1}
\end{align*}
$$

Now

$$
\begin{aligned}
& f(A) \leq \overline{f(A)} \\
\Rightarrow & A \leq f^{-1}(f(A) \\
\Rightarrow & \bar{f} \subseteq \overline{f^{-1}(f(A))} \\
\Rightarrow & \left.\bar{A} \leq f^{-1}(\overline{f(A)}) \quad \text { [foom }(1)\right] \\
\Rightarrow & f(\bar{A}) \leq f\left[f^{-1}(\overline{f(A)})\right] .
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow f(\bar{A}) \subseteq \overline{f(A)} \tag{2}
\end{equation*}
$$

Converse Let c is closed setiny.

$$
\begin{aligned}
& f^{-1(c)} \subseteq x . \\
\Rightarrow & \left.f\left(\overline{f^{-1}(c)}\right) \leq \overline{f\left(f^{-1}(c)\right.}\right) \quad\left[\begin{array}{l}
f_{\text {rom }}(2) \\
A=f^{-1}(c)
\end{array}\right] \\
\Rightarrow & f\left(\overline{\left.f^{-1}(c)\right)} \leq \tau=c \quad[\because c \text { is coned }]\right. \\
\Rightarrow & f(\overline{f-1}(c)) \leq c \\
\Rightarrow & \overline{f^{-1}(c)} \leq f^{+}(c)
\end{aligned}
$$

Also $f^{+1}(c) \leq \overline{f^{-1}(c)}$

$$
\overline{f^{-1}(c)}=f^{-1}(c)
$$

$f^{-1}(c)$ is closed set in.
C is closed in Y
$f^{-1}(c)$ is closed in x.
$\Rightarrow f: x \rightarrow y$ is Continous
Hence Proved.

