Continuity of a function
Let X and Y are metric spaces $f: x \rightarrow y$ is Continous function iff

$$
f^{-1}(B) \subseteq f^{-1}(\bar{B}) \forall B \subseteq y \text {. }
$$

Proof Let $f: x \rightarrow y$ is Continuous \bar{B} is closed set in y.

$$
\begin{aligned}
& \Rightarrow f^{-1}(\bar{B}) \text { is closedinx } \\
& f^{-1}(\bar{B})=f^{-1}(\bar{B})
\end{aligned}\left[\begin{array}{l}
f: x \rightarrow y \text { is continuous } \\
\text { iffy } f^{-1}(c) \text { in closed in } x \\
\text { when } c \text { is closediny }
\end{array}\right]
$$

Now $B \subseteq \bar{B}$

$$
\begin{aligned}
& \Rightarrow f^{-1}(B) \subseteq f^{-1}(\bar{B}) \\
& \Rightarrow \overline{f^{-1}(B)} \subseteq f^{-1(B)} \\
& \Rightarrow f^{-1}(B) \subseteq f^{-1}(\bar{B}) \quad[\text { from (B)] }
\end{aligned}
$$

Converse $\overline{f^{-1}(B)} \subseteq f^{-1}(\bar{B})$
TiP. f is continuous. Let c is closed set in y.

$$
\overline{f^{-1}(c)} \subseteq f^{-1}(\bar{c})
$$

$$
\begin{array}{ll}
\Rightarrow \overline{f-1}(c) & \leq f^{-1}(c) \quad[\because \bar{c}=c, c i \text { closed }] \\
\Rightarrow \overline{f^{-1}(c)}=f^{-1}(c) \quad f^{-1}(c) \leq \overline{f^{-1}(c)}
\end{array}
$$

$\Rightarrow f^{-1}(c)$ is a closed set.
$f: x \rightarrow y$ is continous iff $f^{-1}(c)$ is closed set in x for a closed set cony.
$\Rightarrow \quad f$ is continous function Hence Proved

