

Now BS R =) $f^{-1}(B) \leq f^{-1}(B)$ =) $\overline{f^{-1}(B)} \subseteq \overline{f^{-1}(B)}$ [$\overline{f} \ge 0$] Nerse $\overline{f^{-1}(D)} \subseteq \overline{f^{-1}(B)}$ [$\overline{f} \ge 0$] $=) \quad \overline{f^{-1}(g)} \subseteq \overline{f^{-1}(\overline{g})}$ Converse $\overline{p^{-1}(B)} \subseteq \overline{p^{-1}(B)}$ T.P. f is Continous. Let c is closed set iny. $f^{-1}(c) \subseteq f^{-1}(\overline{c})$

=) $\overline{f(c)} \subseteq f^{-1}(c)$ [: $\overline{c} = c, c \in c$ 2-1(c) < 2-1(c) =) $f^{-1}(c) = f^{-1}(c)$ =) f⁻¹(c) is a closed set. Contract ideas f: x > y is Continous iff f-1(c) is closed set in x for a closed set ciny. f is Continous function Hence Proved