
Sequences in metric space
Sub - Sequential limit :- .
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Enn } be a selueuce in metric (x, d) then
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THI The set of sub - sequential limits of a
sequence Inns in a metric space form
a closed subset of X.

f : . E = fu C- x : n is sub - sequential limit of
{ant}

If E is finite then clearly E is closed
.

If E is not finite

To prove E is closed we have to prove that
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⇒ we find a subservience of an convergestoy .
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By Continuing this process we find a seduce of tveintgers
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